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Chapter 11: Linking
community analyses
to environmental
variables



In many studies, the biotic data is matched by a suite of environmental variables measured at the
same set of sites. These could be natural variables describing the physical properties of the
substrate (or water) from which the samples were taken, e.g. median particle diameter, depth of
the water column, salinity etc, or they could be contaminant variables such as sediment
concentrations of heavy metals. The requirement here is to examine the extent to which the
physico-chemical data is related to (‘explains’) the biological pattern.

The approach adopted is firstly to analyse the biotic data and then ask how well the information on
environmental variables, taken either singly ( Field, Clarke & Warwick (1982) ) or in combination (
Clarke & Ainsworth (1993) ), matches this community structure.¶ The motivation here, as in earlier
chapters, is to retain simplicity and transparency of analysis, by letting the species and
environmental data ‘tell their own stories’ (under minimal model assumptions) before judging the
extent to which one provides an ‘explanation’ of the other.

An analogous range of multivariate methods is available for display and testing of environmental
samples as has been described for biotic data: species are simply replaced by physical/chemical
variables. However, the matrix entries are now of a rather different type and lead to different
analysis choices. No longer do zeros predominate; the readings are usually more nearly continuous
and, though their distributions are often right-skewed (with variability increasing with the mean), it
is often possible to transform them to approximate normality (and stabilise the variance) by a
simple root or logarithmic transformation, see Chapter 9. Under these conditions, Euclidean
distance is an appropriate measure of dissimilarity and PCA (Chapter 4) is an effective ordination
technique, though note that this will need to be performed on the correlation rather than the
covariance matrix, i.e. the variables will usually have different units of measurement and need
normalising to a common scale (see the discussion on page 4.4).

In the typical case of samples from a spatial contaminant gradient, it is also usually true that the
number of variables is either much smaller than for a biotic matrix or, if a large number of chemical
determinations has been made (e.g. GC/MS analysis of a range of specific aromatic hydrocarbons,
PCB congeners etc.) they are often highly inter-correlated, tending to preserve a fixed relation to
each other in a simple dilution model. A PCA can thus be expected to do an adequate job of
representing in (say) two dimensions a pattern which is inherently low-dimensional to start with.

In a case where the samples are replicates from different groups, defined a priori, the ANOSIM tests
of Chapter 6 are equally available for testing environmental hypotheses, e.g. establishing
differences between sites, times, conditions etc., where such tests are meaningful.§ The
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appropriate (rank) dissimilarity matrix would use normalised Euclidean distances.

¶ Methods such as canonical correlation (e.g.  Mardia, Kent & Bibby (1979) ), and the important

technique of canonical correspondence ( ter Braak (1986) ), take the rather different stance of
embedding the environmental data within the biotic analysis, motivated by specific gradient
models defining the species-environment relationships.

§ The ANOSIM tests in the PRIMER package are not now the only possibility; the data will have been
transformed to approximate normality so classical multivariate (MANOVA) tests such as Wilks’

$\Lambda$ (e.g.  Mardia, Kent & Bibby (1979) ) may be valid, but only if the number of variables is
small in relation to the number of samples.
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For the 12 sampling stations (Fig. 8.3) across the sewage-sludge dump ground at Garroch Head {G
}, the biotic information was supplemented by sediment chemical data on metal concentrations
(Cu, Mn, Co, ...) and organic loading (% carbon and nitrogen); also recorded was the water depth at
each station. The data matrix is shown in Table 11.1; it follows the normal convention in classical
multivariate analysis of the variables appearing as columns and the samples as rows.¶
 

Table 11.1. Garroch Head dump ground {G}. Sediment metal concentrations (ppm), water depth at
the site (m) and organic loading of the sediment (% carbon and nitrogen), for the transect of 12
stations across the sewage-sludge dump site (centre at station 6), see Fig. 8.3.

Statio
n

Image not found or type unknown

Cu
Mn Co Ni Zn Cd Pb Cr Dep %C %N

1 26 2470 14 34 160 0 70 53 144 3 0.53

2 30 1170 15 32 156 0.2 59 15 152 3 0.46

3 37 394 12 38 182 0.2 81 77 140 2.9 0.36

4 74 349 12 41 227 0.5 97 113 106 3.7 0.46

5 115 317 10 37 329 2.2 137 177 112 5.6 0.69

6 344 221 10 37 652 5.7 319 314 82 11.2 1.07

7 194 257 11 34 425 3.7 175 227 74 7.1 0.72

8 127 246 10 33 292 2.2 130 182 70 6.8 0.58

9 36 194 6 16 89 0.4 42 57 64 1.9 0.29

10 30 326 11 26 108 0.1 44 52 80 3.2 0.38

11 24 439 12 34 119 0.1 58 36 83 2.1 0.35

12 22 801 12 33 118 0 52 51 83 2.3 0.45

 

No replication is available for the 12 stations so the variance-to-mean plots suggested in Chapter 9
are not possible, but simple scatter plots of all pairwise combinations of variables (draftsman plots,
see the later Fig. 11.9) suggest that log transformations are appropriate for the concentration
variables, though not for water depth. The criteria here are that variables should not show marked
skewness across the samples, enabling meaningful normalisation, and that the relationships
between them should be approximately linear; the standard product-moment correlations between
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variables and Euclidean distances between samples are then satisfactory summaries. In pursuit of
this, note that whilst each variable could in theory be subjected to a different transformation it is
more logical to apply the same transformation to all variables of the same type. Thus the decision
to log all the metal data stems not just from the draftsman plots but also from previous experience
that such concentration variables often have standard deviations proportional to their means; i.e. a
roughly constant percentage variation is log transformed to a stable absolute variance.

Fig. 11.1 displays the first two axes (PC1 and PC2) of a PCA ordination on the transformed data of
Table 11.1. In fact, the first component accounts for much of the variability (61%) in the full matrix,
and the second a further 27%, so the first two components account for 88% and the 2-d plot
provides an accurate summary of the relationships. The axes are defined as

$$ PC1 = 0.38 Cu ^ \prime – 0.22 Mn ^ \prime – 0.08 Co ^ \prime + 0.15 Ni ^ \prime + 0.37 Zn ^
\prime + 0.33 Cd ^ \prime + 0.37 Pb ^ \prime + 0.35 Cr ^ \prime $$ $$ – 0.12 Dep ^ \prime +
0.37 C ^ \prime + 0.33 N ^ \prime \tag{11.1} $$ $$ PC2 = -0.04 Cu ^ \prime + 0.42 Mn ^ \prime
+0.54 Co ^ \prime + 0.47 Ni ^ \prime + 0.16 Zn ^ \prime -0.11 Cd ^ \prime + 0.13 Pb ^ \prime -
0.09 Cr ^ \prime $$ $$ +0.46 Dep ^ \prime + 0.09 C ^ \prime + 0.19 N ^ \prime $$

Broadly, PC1 represents an axis of increasing contaminant load since the sizeable coefficients are
all positive. (The dash denotes that variables have been log transformed, excepting Dep, and
normalised to zero mean and unit standard deviation). PC2 needs to be orthogonal to PC1
(coefficients cross-multiplying to zero) and it does this simply here by, e.g., the large PC1
coefficients being small in PC2 and vice-versa.



Fig. 11.1. Garroch Head dump ground {G}. Two-dimensional PCA ordination of the 11
environmental variables of Table 11.1 (transformed and normalised), for the stations (1–12) across
the sewage-sludge dump site centred at station 6 (% variance explained = 88%). Selected vectors
are shown; they represent direction and relative strength of linear increase of normalised variables
in this 2-d plane (‘base variables’ option). Only the directions of vectors should be interpreted; their
location is arbitrary.
 

Fig. 11.1 shows a strong pattern of change on moving from the ends of the transect to the dump
site centre, which (unsurprisingly) has the greatest levels of organic enrichment and metal
concentrations (exceptions are Mn$^ \prime$, Co$^ \prime$ and Ni$^ \prime$). The superimposed
vectors are in this case entirely accurate (see the footnote on p7-19), since equation (11.1) shows
that the axes are linear in the variables. For example, the Cu$^ \prime$ vector is pointing along
the x axis (to the right) because it has a sizeable positive coefficient of 0.38 on PC1, and only
slightly downwards because of its small negative coefficient (-0.04) on the PC2 axis, whereas Mn$^
\prime$ and Ni$^ \prime$ increase strongly up the y axis (i.e. one would expect Ni$^ \prime$ to be
at its lowest for site 9), with Mn$^ \prime$ pointing left and Ni$^ \prime$ right because of their
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(smaller) negative and positive PC1 terms. %C and Pb vectors are coincident, at least on these 2
axes, from their near identical coefficients.

¶ This is in contrast with abundance matrices which, because of their often larger number of
variables (species) are usually transposed, i.e. the samples are displayed as columns. The PRIMER
software package handles data entered either way round, of course, though it is important to
specify in the entry dialog whether the rows or the columns should be taken as samples.



Univariate community measures

If the biotic data are best summarised by one, or a few, simple univariate measures (such as
diversity indices), one possibility is to attempt to correlate these with a similarly small number of
environmental variables, taken one at a time. The summary provided by a principal component
from a PCA of environmental variables can be exploited in this way. In the case of the Garroch
Head dump ground, Fig. 11.2 shows the relation between Shannon diversity of the macrofauna
samples at the 12 sites and the overall contaminant load, as reflected in the first PC of the
environmental data (Fig. 11.1). Here the relationship appears to be a simple linear decrease in
diversity with increasing load, and the fitted linear regression line clearly has a significantly
negative slope ($\beta$ = – 0.29, p < 0.1%).

Fig. 11.2. Garroch Head macrofauna {G}. Linear regression of Shannon diversity ($H ^ \prime$), at
the 12 sampling stations, against the first PC axis score from the environmental PCA of Fig. 11.1,
which broadly represents an axis of increasing contaminant load (first part of equation 11.1).

11.3 Linking biota to univariate
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Multivariate community measures

In most cases however, the biotic data is best described by a multivariate summary, such as an
MDS ordination. Its relation to a univariate environmental measure can then be visualized in bubble
plots¶, by representing the values of this variable as bubbles of different sizes centred on the biotic
ordination points (see page 7.10). This, or the alternative plotting of coded values for the
environmental variable, can be a useful means of noting consistent differences in an abiotic
variable between biotic clusters, or of observing a smooth relationship with ordination gradients (
Field, Clarke & Warwick (1982) ).
 

A cluster analyses of zooplankton samples at 57 sites in the Bristol Channel {B} was seen in
Chapter 3, and a SIMPROF analyses determined divisions into four main clusters (Fig. 3.7). The
associated MDS plot of Fig. 3.10a, whilst not in conflict with those groups, shows a continuity of
change. Whether this gradient in community bears some relation (causal or not) to the salinity
gradient at these sites is seen by plotting salinity classes as codes or bubble sizes on the MDS.

If an arbitrary coding is used (or a continuous salinity scale for bubble size), biological
considerations might suggest that simple linear coding/scaling is less than optimal here. The
species turnover would be expected to be larger with a salinity differential of 1 ppt from full salinity
water than for a similar change at (say) 25 ppt. This motivates application of a reverse logarithmic
transformation, log (36 – s), or more precisely:

$$ s ^ \star = a - b \log _ e (36 -s ) \tag{11.2} $$

where a = 8.33, b = 3 are simple constants chosen for this data to constrain the transformed
variable $ s ^ \star$ to lie, when rounded to the nearest integer, in the range 1 (low) to 9 (high
salinity).† The resulting MDS plots, Figs. 11.3 and 11.4, show the strong relation to the salinity
gradient§ and might also help to direct attention to sites which appear slightly anomalous in
respect of this gradient, and raise questions of whether there are secondary environmental
variables which could explain the biological differentiation of samples at similar salinities.

Example: Bristol Channel zooplankton
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Fig. 11.3. Bristol Channel zooplankton {B}. Biotic MDS for the 57 sampling sites, as in Fig. 3.10
(based on Bray-Curtis similarities on $\sqrt{}\sqrt{}$-transformed abundances), stress = 0.11.
Numbers are the 9 salinity codes for sites, 1: <26.3, 2: (26.3, 29.0), 3: (29.0, 31.0), ..., 8: (34.7,
35.1), 9: >35.1 ppt..
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Fig. 11.4. Bristol Channel zooplankton {B}. Biotic MDS as in Fig. 11.3, with superimposed ‘bubbles’
whose sizes represent the same salinity scale as above, i.e. the transformed values given by
equation (11.2). The four community groups identified from agglomerative clustering and SIMPROF
tests (as in Fig. 3.10a) are shown by different shading.
 

The macrofauna samples from the 12 stations on the Garroch Head transect {G} lead to the MDS
plot of Fig. 11.5a. For a change, this is based not on abundance but biomass values (root-
transformed).‡ Earlier in the chapter, it was seen that the contaminant gradient induced a marked
response in species diversity (Fig. 11.2), and there is an even more graphic representation of
steady community change in the multivariate plot as the dump centre is approached (stations 1
through to 6), with gradual reversion to the original community structure on moving away from the
centre (stations 6 through to 12).⸙

The correlation of the biotic pattern with some of the contaminant variables is well illustrated by
the bubble plots of Figs. 11.5b-d. In fact, the inter-correlation of many of the contaminants is clear
from the later Fig. 11.9, so several other bubble plots will look similar to that for %C and Pb, which
are virtually identical. It is clear that, when two environmental variables are so strongly related (
collinear), separate putative effects on the biotic structure could never be disentangled (effects are
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said to be confounded).

A decision needs to be made about whether the scale for the contaminant circles (genuine
‘bubbles’ if a 3-d MDS plot is used) is that for the original data or its transformed form. Either may
be useful in particular contexts but, whichever is chosen, the plots are likely to need rescaling ȹ

such that minimum and maximum values are represented by vanishingly small circles up to a fixed
maximum circle size, respectively, as is the case in Fig. 11.5, based on the log-transformed data.
Note the distinction here with the previous use (Figs. 7.13-7.16) of bubble size to represent species
counts, usually on a common scale over species (though also often transformed); the natural
interpretation there of absence as a vanishingly small bubble rarely has a counterpart with bubble
plots of abiotic variables.

As with the earlier Fig. 11.1, a selection of vectors is shown in Fig. 11.5a but these are no longer
the coefficients in the definition of the axis; the environmental variables are an independent data
set from the biotic variables producing these axes. Instead, they reflect the (individual) multiple
correlations of each abiotic variable to the ordination axes, derived from multiple linear regression
(Pearson option, page 7.10). There is no longer any guarantee that the relationship of an
environmental variable to the biotic ordination axes is now linear, and vectors only represent linear
relationships (see the strictures on this point on page 7.10). Here the full set of bubble plots gives
no undue cause for concern that the vector plot is misleading, but this will not always be the case
(see Fig. 11.6c below) and it is wise to check bubble plots before summarising the relationships
solely by vectors.
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Fig. 11.5. Garroch Head macrofauna {G}. a) nMDS of Bray-Curtis similarities from $\sqrt{}$-
transformed species biomass data at the 12 sites (Fig. 8.3) on the E-W transect, stress=0.05.
Vector plot (right) shows the direction of linear increase of sediment concentrations for selected
contaminants, and the multiple correlation of each (transformed) variable on the 2-d ordination
points (circle is correlation of 1). b)-d) bubble plots, i.e. same MDS plot but with circles of
increasing size representing sediment concentrations at those sites, of %C, Mn and Pb, from $\log _
e (0.1+x)$ transformation of Table 11.1 data.
 

The Garroch Head data is an example of a smooth gradation in faunal structure reflected in a
matching gradation in several contaminant variables. In contrast, the Exe estuary nematode
communities {X}, discussed in Chapter 5, separate into five well-defined clusters of samples (Fig.
11.6a). For each of the 19 intertidal sites, six environmental variables were also recorded: the
median particle diameter of the sediment (MPD), its percentage organic content (% Org), the depth
of the water table (WT) and of the blackened hydrogen sulphide layer (H$_ 2$S), the interstitial
salinity (Sal) and the height of the sample on the shore, in relation to the inter-tidal range (Ht).

When each of these is superimposed in turn on the biotic ordination, as bubble plots, some
instructive patterns emerge. MPD (Fig. 11.6b) appears to increase monotonically along the main
MDS axis but cannot be responsible for the division, for example, between sites 1-4 and 7-9. On the
other hand, the relation of salinity to the MDS configuration is non-monotonic (Fig. 11.6c), with
larger values for the ‘middle’ groups, but now providing a contrast between the 1-4 and 7-9
clusters. Some other variables, such as the height up the shore (Fig. 11.6d), appear to bear little
relation to the overall biotic structure, in that samples within the same faunal groups are frequently
at opposite extremes of the intertidal range.

These patterns have some important implications for vector plots. Previously, in the Garroch Head
data of Fig. 11.5, it was suggested that viewing the relations between environmental variables and
the ordination via a vector plot was unlikely to mislead, because perusal of bubble plots for each
variable in that case suggested that changes were, if not truly linear, at least monotonically
increasing or decreasing across the plot. However, that this will not always be true and, here, the
salinity bubble plot clearly shows the difficulty. In which direction does salinity increase? A linear
regression of, say, a quadratic function may well have a zero slope (small vector, in no particular
direction) thus making it impossible to distinguish between a vector for an obvious, but non-
monotonic relationship and that for a situation in which there is apparently little relationship at all,
such as for the Ht variable in Fig. 11.6d.

These plots, however, make clear the limitations in relating the community structure to a single
environmental variable at a time: there is no basis for answering questions such as “how well does
the full set of abiotic data jointly explain the observed biotic pattern?” and “is there a subset of the
environmental variables that explains the pattern equally well, or better?” These questions are
answered in classical multivariate statistics by techniques such as canonical correlation (e.g. 
Mardia, Kent & Bibby (1979) ) but, as discussed in earlier chapters, this requires assumptions which
are unrealistic for species abundance or biomass data (correlation and Euclidean distance as

Example: Exe estuary nematodes
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measures of similarity for biotic data, linear relationships between abundance and environmental
gradients etc).

Instead, the need is to relate community structure to multivariate descriptions of the abiotic
variables, using the type of non-parametric, similarity-based methods of previous chapters.

Fig. 11.6. Exe estuary nematodes {X}. a) MDS of species abundances at the 19 sites, as in Fig. 5.1;
b)-d) the same MDS but with superimposed circles representing, respectively, median particle
diameter of the sediment, its interstitial salinity and height up the shore of the sampling locations.
(Stress = 0.05).

¶ Bubble plots can also be useful in a wider context:  Field, Clarke & Warwick (1982)  superimpose

morphological characteristics of each species onto a species MDS, and Chapter 7 gives a number of
examples of how single and segmented bubble plots can show relationships between ordinations
and some of the biotic variables used in their construction. Segmented bubble plots can similarly

be used with abiotic variables, if carefully enough scaled ( Purcell, Rushworth, Clarke et al. (2014) ).

† In the PRIMER ‘Transform (individual)’ routine the expression for the salinity variable is thus:
INT(0.5 + 8.33 – 3*log(36–V)), and these bubble values can then be used to label the MDS plot.
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§ Note the horseshoe effect (more properly termed the arch effect), which is a common feature of
the ordination from single, strong environmental gradients. Both theoretically and empirically, non-
metric MDS would seem to be less susceptible to this than metric ordination methods. But without
the drastic (and somewhat arbitrary) intervention in the plot that a technique like detrended
correspondence analysis uses (specifically to ‘cut and paste’ such ordinations to a straight line),
some degree of curvature is unavoidable and natural. Where samples towards opposite ends of the
environmental gradient have few species in common (thus giving dissimilarities near 100%),
samples which are even further apart on the gradient have little scope to increase their
dissimilarity further. To some extent, non-metric MDS can compensate for this by the flexibility of

its monotonic regression of distance on dissimilarity (Chapter 5), but arching of the tails of the plot
is clearly likely when dissimilarities near 100% are reached.

‡ Chapter 14 argues that, where it is available, biomass can sometimes be more biologically
relevant than abundance, though in practice MDS plots from both will be broadly similar, especially

under heavy transformation, as the data tends towards presence/ absence (Chapter 9).

⸙This can be seen also in the MDS plots of Figs. 7.9c & d, though the known ordering of sites was not
used for the purposes of that example. The minor difference in the MDS configuration from Fig.
11.5 is not due to any difference in transformation or similarity but the fact that the analysis here
uses all 65 species with recorded biomass whereas, for illustrative purposes, the previous shade
plot used only the 35 accounting for at least 1% of the biomass in one or more samples.

ȹ This is best accomplished within PRIMER by using output from the Summary Stats routine (for
variables) on the Analyse menu.
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The intuitive premise adopted here is that if the suite of environmental variables responsible for
structuring the community were known¶, then samples having rather similar values for these
variables would be expected to have rather similar species composition, and an ordination based
on this abiotic information would group sites in the same way as for the biotic plot. If key
environmental variables are omitted, the match between the two plots will deteriorate. By the
same token, the match will also worsen if abiotic data which are irrelevant to the community
structure are included.†

The Exe estuary nematode data {X} again provides an appropriate example. Fig. 11.7a repeats the
species MDS for the 19 sites seen in Fig. 11.6a. The remaining plots in Fig. 11.7 are of specific
combinations of the six sediment variables:
H$_2$S, Sal, MPD, %Org, WT and Ht, as defined above. For consistency of presentation, these plots
are also MDS ordinations but based on an appropriate dissimilarity matrix (Euclidean distance on
the normalised abiotic variables). In practice, since the number of variables is small, and the
distance measures the same, the MDS plots will be largely indistinguishable from PCA
configurations (note that Fig. 11.7b is effectively just a scatter plot, since it involves only two
variables).

The point to notice here is the remarkable degree of concordance between biotic and abiotic plots,
especially Figs. 11.7a and c; both group the samples in very similar fashion. Leaving out MPD (Fig.
11.7b), the (7–9) group is less clearly distinguished from (6, 11) and one also loses some matching
structure in the (12–19) group. Adding variables such as depth of the water table and height up the
shore (Fig. 11.7d), the (1–4) group becomes more widely spaced than is in keeping with the biotic
plot, sample 9 is separated from 7 and 8, sample 14 split from 12 and 13 etc, and the fit again
deteriorates. In fact, Fig. 11.7c represents the best fitting environmental combination, in the sense
defined below, and therefore best ‘explains’ the community pattern.

11.4 Linking biota to multivariate
environmental patterns



Fig. 11.7. Exe estuary nematodes {X}. MDS ordinations of the 19 sites, based on: a) species
abundances, as in Fig. 5.1; b) two sediment variables, depth of the $H _ 2S$ layer and interstitial
salinity; c) the environmental combination ‘best matching’ the biotic pattern: $H _ 2 S$, salinity
and median particle diameter; d) all six abiotic variables. (Stress = 0.05, 0, 0.04, 0.06).
 

Measuring agreement in pattern

Quantifying the match between any two plots could be accomplished by a Procrustes analysis (
Gower (1971) ), in which one plot is rotated, scaled or reflected to fit the other, in such a way as to
minimize a sum of squared distances between the superimposed configurations. This is not wholly
consistent, however, with the approach in earlier chapters; for exactly the same reasons as
advanced in deriving the ANOSIM statistic in Chapter 6, the ‘best match’ should not be dependent
on the dimensionality one happens to choose to view the two patterns. The more fundamental
constructs are, as usual, the similarity matrices underlying both biotic and abiotic ordinations.§
These are chosen differently to match the respective form of the data (i.e. Bray-Curtis for biota,
Euclidean distance for environmental variables) and will not be scaled in the same way. Their
ranks, however, can be compared through a rank correlation coefficient, a very natural measure to
adopt bearing in mind that a successful MDS is a function only of the similarity ranks.
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The procedure is summarised schematically in Fig. 11.8, and  Clarke & Ainsworth (1993)  describe
the approach in detail. Three possible matching coefficients are defined between the (unravelled)
elements of the respective rank similarity matrices {$r_i$; i = 1, ..., N} and {$s_ i $; i = 1, ..., N},
where N = n(n–1)/2 and n is the number of samples. The simplest is the Spearman coefficient (e.g. 
Kendall (1970) )‡:

$$ \rho_s = 1 - \frac{6} {N \left( N ^ 2 - 1 \right) } \sum _ {i=1} ^ N \left( r_i - s_i \right) ^2
\tag{11.3} $$

A standard alternative is Kendall’s $\tau$ ( Kendall (1970) ) which, in practice, tends to give rather
similar results to $\rho _ s$. The third possibility is a modified form of Spearman, the weighted
Spearman (or harmonic⸙) rank correlation:

$$ \rho_w = 1 - \frac{6} {N \left( N ^ 2 - 1 \right) } \sum _ {i=1} ^ N \frac{ \left( r_i - s_i \right) ^2
} { r_i + s_i} \tag{11.4} $$

The constant terms are defined such that, in both (11.3) and (11.4), $\rho$ lies in the range (–1, 1),
with the extremes of $\rho$ = –1 and +1 corresponding to the cases where the two sets of ranks
are in complete opposition or complete agreement, though the former is unlikely to be attainable in
practice because of the constraints inherent in a similarity matrix. Values of $\rho$ around zero
correspond to the absence of any match between the two patterns, but typically $\rho$ will be
positive. It is tempting, but wholly wrong, to refer $\rho _ s$ to standard statistical tables of
Spearman’s rank correlation, to assess whether two patterns are significantly matched ($\rho >
0$). This is invalid because the ranks {$r _ i$} (or {$s _ i$}) are not mutually independent
variables, since they are based on a large number (N) of strongly interdependent similarity
calculations.

In itself, this does not compromise the use of $\rho _ s$ as an index of agreement of the two
triangular matrices. However, it could be less than ideal because few of the equally-weighted
difference terms in equation (11.3) involve ‘nearby’ samples. In contrast, the premise at the
beginning of this section makes it clear that we are seeking a combination of environmental
variables which attains a good match of the high similarities (low ranks) in the biotic and abiotic
matrices. The value of $\rho _ s$ , when computed from triangular similarity matrices, will tend to
be swamped by the larger number of terms involving distant pairs of samples, contributing large
squared differences in (11.3). This motivates the down-weighting denominator term in (11.4).
However, experience suggests that, typically, this modification affects the outcome only marginally
and, in the interests of simplicity of explanation, the well-known Spearman coefficient may be
preferred.
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Fig. 11.8. Schematic diagram of the BEST procedure (Bio-Env): selection of the abiotic variable
subset maximising rank correlation ($\rho$) between biotic and abiotic (dis)similarity matrices, by
checking all combinations of variables.
 

The BEST (Bio-Env) procedure

The matching of biotic to environmental patterns can now take place ȹ, as outlined schematically
in Fig. 11.8. Combinations of the environmental variables are considered at steadily increasing
levels of complexity, i.e. k variables at a time (k = 1, 2, 3, ..., v). Table 11.2 displays the outcome
for the Exe estuary nematodes.

Table 11.2. Exe estuary nematodes {X}. Combinations of the 6 environmental variables, taken k at
a time, yielding the best matches of biotic and abiotic similarity matrices for each k, as measured
by weighted Spearman rank correlation $\rho _ s$; bold type indicates overall optimum. See earlier
text for variable abbreviations.
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The single abiotic variable which best groups the sites, in a manner consistent with the faunal
patterns, is the depth of the $H _ 2 S$ layer ($\rho _ s = 0.66$); next best is the organic content
($\rho _ s = 0.57$), etc. Naturally, since the faunal ordination is not one-dimensional (Fig. 11.7a), it
would not be expected that a single abiotic variable would provide a very successful match, though
knowledge of the H$_ 2$S variable alone does distinguish points to the left and right of Fig. 11.7a
(samples 1 to 4 and 6 to 9 have lower values than for samples 5, 10 and 12 to 19, with sample 11
between).

The best 2-variable combination also involves depth of the $H _ 2 S$ layer but adds the interstitial
salinity. The correlation ($\rho _ s = 0.77$) is markedly better than for the single variables, and this
is the combination shown in Fig. 11.7b. The best 3-variable combination retains these two but adds
the median particle diameter, and gives the overall optimum value for $\rho _ s$ of 0.81 (Fig.
11.7c); $\rho _ s$ drops slightly to 0.80 for the best 4- and higher-way combinations. The results in
Table 11.2 do therefore seem to accord with the visual impressions in Fig. 11.7.Ɥ In this case, the
first column of Table 11.2 has a hierarchical structure: the best combination at one level is always
a subset of the best combination on the line below. This is not guaranteed since all combinations
have been evaluated and simply ranked, though it will tend to happen when the explanatory
variables are only weakly related to each other, if at all.

An exhaustive search over v variables involves

$$ \sum _ {k =1} ^ {v} = \frac{ v ! } { k ! \left( v - k \right) ! } = 2 ^ v - 1 \tag{11.5} $$
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combinations, i.e. 63 for the Exe estuary study, though this number quickly becomes prohibitive
when v is larger than about 15. Above that level, one could consider stepwise procedures which
search in a more hierarchical fashion, adding and deleting variables one at a time (see the BEST
BVStep option, Chapter 16). In practice though, it may be desirable to limit the scale of the search
initially, for a number of reasons, e.g. always to include a variable known from previous experience
or external information to be potentially causal. Alternatively, scatter plots of the environmental
variables may demonstrate that some are highly inter-correlated and nothing in the way of
improved ‘explanation’ could be achieved by entering them all into the analysis.

An example is given by the Garroch Head macrofauna study {G}, for which the 11 abiotic variables
of Table 11.1 are first transformed, to validate the use of Euclidean distances and standard
product-moment correlations (page 11.2). As indicated earlier, choice of transformations is aided
by a draftsman plot, i.e. scatter plots of all pairwise combinations of variables, Fig. 11.9. Here, this
is after all the concentration variables, but not water depth, have been log transformed℈, in line
with the recommendations on page 11.2

Fig. 11.9. Garroch Head macrofauna {G}. Draftsman plot (all possible pairwise scatter plots) for the
11 abiotic variables recorded at 12 sampling stations across the sewage sludge dumpsite. All
variables except water depth have been log transformed.
 

The draftsman plot, and the associated correlation matrix between all pairs of variables, can then
be examined for evidence of collinearity (page 11.3), indicated by straight-line relationships, with
little scatter, in Fig. 11.9. A further rule-of-thumb would be to reduce all subsets of (transformed)
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variables which have mutual correlations averaging more than about 0.95 to a single
representative. This suggests that %C, Cu, Zn and Pb are so highly inter-correlated that it would
serve no useful purpose to leave them all in the BEST analysis. For every good match that included
%C, there would be equally good matches including Cu, Zn or Pb, leading to a plethora of
effectively identical solutions. Here, the organic carbon load (%C) is retained and the other three
excluded, leaving 8 abiotic variables in the full Bio-Env search. This results in an optimal match of
the biotic pattern with %C, %N and Cd ($\rho _ s = 0.86$). The corresponding ordination plots are
seen in Fig. 11.10. The biotic MDS of Fig. 11.10a, though structured mainly by a single strong
gradient towards the dump centre (e.g. the organic enrichment gradient seen in Fig. 11.10b), is not
wholly 1-dimensional. Additional information, on a heavy metal, appears to improve the
‘explanation’.

Fig 11.10. Garroch Head macrofauna {G}. MDS plots for the 12 sampling stations across the
sewage-sludge dump site (Fig. 8.3), based on: a) species biomass, as in Fig. 11.5a; b)-d) three
combinations of carbon, nitrogen and cadmium concentrations (log transformed) in the sediments,
the best match with the biota over all combinations of the 8 variables being for %C, %N and Cd
($\rho_s$ = 0.86). (Stress = 0.05, 0, 0.01, 0.01).
 

Further examples of the Bio-Env procedure are given in  Clarke & Ainsworth (1993) ,  Clarke (1993)
,  Somerfield, Gee & Warwick (1994a) ,  Somerfield, Gee & Warwick (1994b)  and many subsequent
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applications. For a series of data sets on impacts on benthic macrofauna around N Sea oil rigs, 
Olsgard, Somerfield & Carr (1997)  and  Olsgard, Somerfield & Carr (1998)  use the Bio-Env
procedure in a particularly interesting way. They examine which transformations (Chapter 9) and
what level of taxonomic aggregation (Chapter 10) tend to maximise the Bio-Env correlation, $\rho$.
The hypotheses examined are that certain parts of the community, on the spectrum of rare to
common species, may delineate the underlying impact gradient more clearly (see page 9.4), as
may some taxonomic levels, higher than species (see page 10.1).
 

Global BEST test

Another question which naturally arises is the extent to which the conclusions from a BEST run can
be supported by significance tests. This is problematic given the lack of model assumptions
underlying this procedure, which can be seen as both a strength (i.e. generality, ease of
understanding, simplicity of interpretation) and a weakness (lack of a structure for formal statistical
inference). A simple RELATE test is available (see page 6.10 and later) of the hypothesis that there
is no relationship between the biotic information and that from a specified set of abiotic variables,
i.e. that $\rho$ is effectively zero. This can be examined by a permutation or randomisation test, of
a type met previously on pages 6.8 & 6.10, in which $\rho$ is recomputed for all (or a large random
subset of) permutations of the sample labels in one of the two underlying similarity matrices. As
usual, if the observed value of $\rho$ exceeds that found in 95% of the simulations, which by
definition correspond to unrelated ordinations, then the null hypothesis can be rejected at the 5%
level.

Note however that this is not a valid procedure if the abiotic set being tested against the biotic
pattern is the result of optimal selection by the BEST procedure, on the same data. For v variables,
this is implicitly the same as carrying out $2 ^ v –1$ null hypothesis tests, each of which
potentially runs a 5% risk of Type 1 error (rejecting the null hypothesis when it is really true). This
rapidly becomes a very large number of tests as v increases, and a naïve RELATE test on the
optimal combination is almost certain to indicate a significant biotic-abiotic relation, even with
entirely random data sets!

What is needed here is a randomisation test which incorporates the fitting stage and thus allows for
the selection bias in the optimal solution. This can be readily achieved, though requires quite a
heavy computational load. The requirement is to generate the (null) distribution of the maximum
$\rho$ that can be obtained, by an exhaustive search over all subsets of environmental variables
(see Fig. 11.8), when there really is no matching structure between biotic and abiotic data. The null
situation is again produced by randomly permuting the columns (samples) of one of the data
matrices on the left hand side of Fig. 11.8, in relation to the other. The two matrices are then
treated as if their samples do have matching labels and the full Bio-Env procedure is applied, to
find the subset of environmental variables which gives the ‘best’ match. Of course, this $\rho$
would not be expected to be large, since any real match has been destroyed by the permutation,
but $\rho$ will clearly be greater than zero since the largest of all the $2 ^ v –1$ calculated
correlations has been selected.
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So far, then, we have produced a single value from the null distribution of (max) $\rho$, when
there is no biotic-environmental link. This whole procedure is now repeated a total of (say) 999
times, each time randomly reshuffling the columns of the abiotic matrix and running through the
entire Bio-Env procedure, to obtain an optimum $\rho$. A histogram of these values is the null
distribution, namely, the expected range of BEST Bio-Env $\rho$ values that it is possible to obtain
by chance when there is no biotic to abiotic link. As usual, comparison with the observed value of
$\rho$ shows the statistical significance, or otherwise, of this observed $\rho$.

Fig 11.11 shows the resulting histograms for the two examples used in this chapter to illustrate the
BEST (Bio-Env) procedure. For both the Exe nematodes {X} and the Garroch Head macrofauna {G}
, we can be confident in interpreting the biota to environment links because the observed best
matches of $\rho _ s$ = 0.81 and 0.86 are larger than could have been obtained by chance: they
are greater than any of their 999 simulated $\rho _ s$ values (p<0.1%). Note, however, how far the
null distributions are from being centred at $\rho = 0$, particularly for the Garroch Head data,
which has a mode at about 0.25 and right-tail values up to about 0.7. This reflects both the small
number of sites that are being matched and the simplicity of the strong linear gradient in the
sample structure. With 8 abiotic variables (and thus a choice of 255 possible subsets) it is clearly
not that difficult to find an environmental combination, by chance, that gives some degree of
match to any rank order of the samples along a line.



Fig. 11.11. Garroch Head macrofauna {G} and Exe estuary nematodes {X}. Global BEST (Bio-Env)
test for a significant relationship between community and environmental samples. The histograms
are the null permutation distributions of possible values for the best Bio-Env match (Spearman
$\rho_s$), in the absence of a biota-environment relationship.
 

The same idea can be used to derive a permutation test for the BVStep context, in which only a
stepwise-selected set of optimal variables are generated. The simulations of the null condition
simply require an equivalent stepwise search on the randomly permuted (and thus non-matching)
matrices for the maximum $\rho$, repeated many times to obtain the null distribution for $\rho$.
This is the principle of permutation tests: permute the data appropriately to reflect the null
condition, then repeat exactly the same steps (however complicated) in calculating the test
statistic as were carried out on the data in its original form, and compare the true statistic to the
values under permutation.
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These tests for Bio-Env and BVStep procedures are together referred to as global BEST tests, and
as with the global ANOSIM test of Chaper 6, this becomes an important initial ‘traffic light’. The null
hypothesis, of no biotic to abiotic link, must be decisively rejected before any attempt is made to
interpret the environmental variables that BEST selects. This is always helped by increasing the
number of sites, conditions, times etc that are being matched. For the Exe data, there were 19
sites (compared with 12 for Garroch Head) and only 6 environmental variables, and the null
distribution of $\rho _ s$ in Fig. 11.11 now has mode less than 0.1, with right tail values stretching
to no higher than about 0.4. Any reasonably large observed $\rho _ s$ is therefore likely to be
interpretable.

¶ These might sometimes include biotic as well as abiotic data, e.g. when assessing how coral reef
fish communities might be structured by area cover of specific, dominant species of coral.

† Additional reasons for a poor match include: cases where the observed biotic patterns are largely
a function of internal stochastic forces, e.g. competitive interactions within the assemblage, rather
than external forcing variables; abiotic variables are measured over the wrong spatio-temporal
scales in terms of their impact on community structure; there is a large element of random
variation from sample to sample, under the same environmental conditions, e.g. the unit sample
size is inadequate to characterise the assemblage; and a more technical reason (addressed later)
concerning non-additive effects of structuring variables. In all these cases, the procedure may fail
to ‘explain’ the community structure well, in terms of the provided set of environmental variables.

§ For example, in spite of the very low stress in Fig. 11.7, a 2-d Procrustes fit of 11.7a with 11.7c
will be rather poor, since the (5, 10) and (12–19) groups are interchanged between the plots. Yet,
the interpretation of the two analyses is fundamentally the same (five clusters, with the (5, 10)
group out on a limb etc). This match will probably be better in 3-d but will be fully expressed,
without arbitrary dimensionality constraints, in the underlying similarity matrices.

‡ This matrix correlation statistic has already been met, e.g. on pages 6.8, 6.10, 7.5, and will be
used extensively again later.

⸙This is so defined by  Clarke & Ainsworth (1993)  because it is algebraically related to the average
of the harmonic mean of each ($r _ i $, $s _ i$) pair. The denominator term, $r _ i + s _ i$, down-
weights the contribution of large ranks; these are the low similarities, the highest similarity
corresponding to the lowest value of rank similarity (1), as usual. Note that $\rho _w$ and $\tau$
tend to give consistently lower values than $\rho _s$ for the same match; nothing should therefore
be inferred from a comparison of absolute values of $\rho _s$, $\tau$ and $\rho _w$.

ȹ This is implemented in the PRIMER BEST routine, which includes both a full search (the Bio-Env
option) and a sequential, stepwise, form of this (BVStep), when there are too many variables to
permit an exhaustive search.

Ɥ This will not always be the case if the 2-d faunal ordination has non-negligible stress. It is the
matching of the similarity matrices which is definitive, although it would usually be a good idea to
plot the abiotic ordination for the best combination at each value of k, in order to gauge the effect
of a small change in $\rho$ on the interpretation. Experience suggests that combinations giving the
same value of $\rho$ to two decimal places do not give rise to ordinations which are
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distinguishable in any practically important way, thus it is recommended that $\rho$ is quoted only
to this accuracy, as in Table 11.2.

℈ This actually uses a log(c+x) transformation where c is a constant such as 1 or 0.1. The necessity
for this, rather than a simple log(x) transform, comes from the zero values for the Cd
concentrations in Table 11.1, log(0) being undefined. A useful rule-of-thumb here is to set the
constant c to the lowest non-zero measurement, or the concentration detection limit.



Entering variables in groups

In some contexts, it makes good sense to utilise an a priori group structure for the explanatory
variables and enter or drop all variables within a single group simultaneously, e.g. if locations of
sites expressed in latitude and longitude are two of the variables, it does not make sense to enter
one into the ‘explanation’ and leave out the other.  Valesini, Tweedley, Clarke et al. (2014) {e}
give a more major example of an estuarine fish study, where abiotic variables potentially driving
the assemblages over different spatial scales were divided into those measuring wave exposure,
substrate/vegetation type, extent of marine water intrusion, and more dynamic water quality
parameters – with multiple variables in each group – all within a categorical structure, e.g. of
different microtidal estuaries in Western Australia. Groups were entered into the BEST Bio-Env
routine as indivisible units, to determine which variable type, or types, best explained the fish
communities (at sites aggregated by SIMPROF into homogeneous clusters of their fish
communities). Both BEST and the global BEST test need thus to be run on these (aggregated)
samples by searching all combinations of groups of explanatory variables, which involves a much
smaller number of combinations – and consequently lower selection bias to allow for in the
permutation test – than if all variables had been separately entered.¶
 

Constrained (‘two-way’) BEST analyses

A further BEST modification parallels the two-way ANOSIM test of Chapter 6 and two-way SIMPER
breakdown of Chapter 7. A strong categorical factor, clearly dominating the main differences
observed in community structure among samples in an ordination, may sometimes not be
comfortably incorporated into a set of quantitative explanatory variables to enter into BEST, e.g. if
the factor has several levels which are in no sense ordered. An example could again be found in
the  Valesini, Tweedley, Clarke et al. (2014)  study in which the suite of c. 15 quantitative
environmental variables are measured at a wide range of sites within each of a number of different
estuaries. Rather than attempt to convert the estuary factor into a quantitative form†, or simply
ignore it on the grounds (say) that the major differences noted between estuaries should be
identified by one of the measurement variables, in some circumstances it may be appropriate to
accept that the differing locations will have differing assemblages and remove this categorical
estuarine factor. For each considered combination of explanatory variables (or groups of variables
perhaps, in the previous section), the matching statistic $\rho$ is calculated separately within each
of the levels (each estuary) and its values then averaged over those levels. The variable
combination giving the largest average $\rho$ is the constrained BEST match, and it can be tested
for departure from the null hypothesis of ‘no genuine match’ by the same style of global BEST test
as previously, but with constrained permutation of sample labels only within each level, then
recalculating the largest average $\rho$, etc. The 2-way crossed ANOSIM analogy is very clear.

11.5 Further ‘BEST’ variations
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¶ The option to group variables, using a pre-defined indicator, is implemented in the PRIMER BEST
routine and its associated test, as is the conditional BEST analysis which follows.

† Clearly it would usually be inappropriate to number estuaries 1, 2, 3, 4, and then treat this as a
quantitative variable, since it forces estuaries 1 and 4 to be ‘further apart’ environmentally than 1
and 3, which may be arbitrary. Instead, the trick is usually to replace this single factor by four new
binary factors. (Is the sample in estuary 1? If so score 1, otherwise 0. Is it in estuary 2? … etc).
Such binary variables are quantitative and now ordered.



The idea of linkage trees¶ is most easily understood in the context of a particular example, so Fig.
11.12 redisplays some of the nMDS bubble plots for the 17 Exe estuary sites used to illustrate the
BEST/Bio-Env procedure, earlier in this chapter. Bio-Env shows that three variables, MPD, Sal% and
H$_2$S, can ‘explain’ a large (and significant, Fig. 11.11) component of the multivariate biotic
structure but this does not tell us how they explain the structure, e.g. for the five main clusters
seen in Fig. 5.4, which abiotic variables are distinguishing which clusters? The answer is readily
seen in this case from a few simple bubble plots, but this is only possible because the 2-d MDS
stress is low (0.05) and thus the plot is reliable. In general it would be useful to have some means
of describing how particular abiotic variables ‘explain’ particular divisions of samples in the full,
high-d biotic space: the PRIMER LINKTREE routine can be helpful here.

Binary divisive clustering was introduced on page 3.6. The unconstrained clustering technique
described there (UNCTREE) divides each sample set into two subsets, successively, each binary
division being chosen in some optimum way, until a stopping rule is triggered, which is typically a
SIMPROF test failing to demonstrate community differences among the remaining samples in a
group. LINKTREE, in contrast, is a constrained binary divisive clustering, in which the only
subdivisions allowed are those for which an ‘explanation’ exists in terms of a threshold on one of
the environmental variables in a separately supplied abiotic matrix for a matching set of samples.
For the Exe nematode data, the first stage is shown in Fig. 11.12: MPD, Sal% and H$_2$S are
considered one at a time. For Median Particle Diameter, the ‘best’ split of the full set of samples
into two groups is shown on the biotic MDS for all 19 sites (seen previously at Fig 11.6),
corresponding to the threshold MPD<0.18 for sites 1-4, 7-9 (sites to the left of the dotted line) and
MPD>0.21 for the remaining sites (to the right), Fig. 11.12a. The ‘best’ split is defined here as that
which maximises the ANOSIM R statistic between the two groups formed†, as was the case for the
unconstrained (UNCTREE) procedure, and it does not use the MDS plot in any way – thus ensuring
that the procedure works in the true high-d space of the biota data.

Fig. 11.12. Exe estuary nematodes {X}. First step in LINKTREE illustrated by a biotic nMDS of the
19 sites, as Fig. 11.6, with bubble plots for: a-c) median particle diameter, interstitial salinity (as %
of 36ppt) and depth of the anoxic layer (cm). Dotted line indicates the optimal split of the

11.6 Linkage trees (and example)
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communities at the 19 sites into two groups (open and closed circles), based on maximising the
ANOSIM R statistic between them, subject to the constraint that the figured abiotic variable takes
consistently lower values in one group than the other.
 

For LINKTREE (unlike UNCTREE), not all $2 ^ {18}$ ways of dividing 19 samples into two groups
are permitted, because most of them will not correspond to a precise threshold on the median
particle diameter. In fact, by ranking the sites in increasing MPD order, it is clear that we only need
to consider 18 possible divisions in the constrained case (the site with smallest MPD vs. the rest,
the two smallest vs. the rest, and so on). Fig. 11.2a shows the best of these 18 splits gives R=0.73.

Now the other two abiotic variables are considered in turn. Sal%, though important (as will be seen
later), does not do a good job of an initial binary split, the best division giving only R=0.39 (Fig.
11.12b) – it is clear that sites are either of greatly reduced interstitial salinity (<24.8% of seawater)
or are reasonably saline (>71.2%), with no sites in between. However, depth of the blackened H$_
2$S layer separates the 19 sites into two groups best of all here, with R=0.80 (Fig 11.12c), so this
becomes the first division (labelled A) in the dendrogram of Fig. 11.13a.

Each subset is now subject to further binary division, exploring thresholds on all three abiotic
variables. It is clear from Fig. 11.12b, for example, that Sal% will provide the best explanation for
the natural separation of sites (5,10) from (12-19), those for which H$_ 2$S>20 in the first split.
This gives R=1, split G on Fig. 11.13a, and the remaining divisions proceed in the same way. The
figure legend gives some detail on layout of the full divisive dendrogram of Fig. 11.3a. One point to
note is that inequalities can be in either direction, e.g. the division at J has sites to the left with
Sal%>89.4 and to the right with Sal%<89, and these will reverse if the dendrogram branches are
arbitrarily rotated (in the same way as for any other dendrogram). Further, though all splits are
shown§, it would be incorrect to interpret some, since they ‘fail’ the SIMPROF test, i.e. if there is no
evidence of biological heterogeneity of samples in a current group, then there can be no
justification for seeking an environmental explanation for further dividing that group – thus these
parts of the dendrogram are ‘greyed out’.

Fig. 11.13. Exe estuary nematodes {X}. a) Binary divisive clustering (LINKTREE) of the
communities at 19 sites, for which step A was illustrated in Fig. 11.12, i.e. each split constrained by
a threshold on one of the three abiotic variables: MPD, Sal%, H$_ 2$S. The first in-equality (e.g. for
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split A, H$_2$S<7.3) always indicates sites to the left side of the split, the second (in brackets, e.g.
>20) sites to the right. The same splits will be obtained whether abiotic data is transformed or not
(the process is truly non-parametric!) so the inequalities should always quote untransformed
values, for greater clarity. Dotted or grey lines or text denote splits not to be interpreted because
they are below the stopping rules; here the latter use SIMPROF tests before each split and also
require that R>0.2 (e.g. the split at L would be allowed by SIMPROF but has R<0.2). The y axis
scale (B%) is the average of the between-group rank dissimilarities, using the original ranks from
the biotic resemblance matrix, scaled to take the value 100% if the first split is a perfect division
(i.e. R=1).
b) Unconstrained binary divisive clustering (UNCTREE) of the same data, plotted in ‘classic’ style
(e.g. as for LINKTREE in PRIMER v6; v7 allows both formats for either analysis). UNCTREE is based
only on the biotic resemblances, with grey lines/letters again denoting divisions with R<0.2 or not
supported by SIMPROF tests.
 

The scale on the y axis can be chosen (the A% scale) to make the divisions equi-step, arbitrarily,
down the dendrogram (this is the option used in most standard CART programs) but here we
display divisions at a y axis level (B%) which reflects the magnitude of differences between the
subsets of samples formed at each division, in relation to the community structural differences
across all samples. Such an absolute scale cannot be created from the ANOSIM R values used to
make each split, since they continually ‘relativise’, by re-ranking the dissimilarities within each
current set.  Clarke, Somerfield & Gorley (2008)  show that an appropriate scale can be based only
on between-group average rank dissimilarity, using the original ranks from the full matrix. This is
scaled by dividing by its value for the case of maximum possible separation of the first two groups
produced by the initial division (the case R=1) and multiplying by 100, to give the B% scale. The
Fig. 11.13a dendrogram does not quite start at B = 100 therefore, since the split seen in Fig.
11.12c gives R = 0.80 (clearly a few between group dissimilarities are smaller than some within
group values) but the split at G is seen to be between very different groups (B = 82%), whilst that
at, for example, D (the division of site 4 from 1 to 3), is inconsequential in comparison (B = 5%);
that pattern is clear from the MDS plot.

An interesting but subtle point arises for split J, with its B = 35% value just exceeding that for H, a
prior division (B = 34%). This reversal in the dendrogram is here an indication that the split of site
15 from (12-14, 16-19) would have been a more natural first step than the LINKTREE division of
sites 12-14 from 15-19. In fact this is exactly what unconstrained (UNCTREE) clustering does, as
seen in Fig. 11.13b (split J’). The point to note here is that LINKTREE is not able to make this more
natural division because none of the three variables gives a threshold value which can separate
site 15 from the set (12-14, 16-19). It is only after the group 12-14 has been removed that the
separation of site 15 (now only from 16-19) has an ‘explanation’. So the presence of such reversals
in a dendrogram could be an indication that an abiotic variable capable of ‘explaining’ a natural
pattern has not been measured. Here, site 15 is discriminated by Ht (height up the shore) and, had
that variable been included, the dendrogram would have separated 15 before others in that group.
However, a reversal could equally well reflect large sampling variability in the biotic community or
the measured abiotic variables – it is clear that LINKTREE is a technique suited only to robust data,
with well-established detailed patterns in SIMPROF tests, and it is relevant that this successful
example of a LINKTREE run is a case where both biotic and abiotic data have been (time-)averaged
to reduce the variability‡.
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One unwelcome result, however, of introducing more explanatory variables is that there are certain
to be multiple explanations for each split, whereas this is only seen in a limited way in Fig. 11.13a,
e.g. at split I, where a threshold on MPD or on Sal% will give the same division of sites (12,13) from
14. Had we used all 6 abiotic variables, nearly every division would have had multiple explanations,
e.g. the first split A would have resulted from %Org>0.37(<0.24) as well as H$_ 2$S<7.3(>20). The
routine can have no basis for choosing between ‘explanations’ which give the same split – neither
may be causal, of course! So there is a strong incentive in LINKTREE to be disciplined and use few
abiotic variables, chosen for their potential causality and likely independence, as now seen.
 

Fig. 11.14 shows the divisive LINKTREE clustering of 27 sites in 5 creeks of the Fal estuary, UK,
based on nematode assemblages (creek map at Fig. 9.3, {f}). The creeks have varying levels of
metal pollution by historic mining, here represented by sediment Cu concentrations (other metals
being highly correlated with Cu), and a single grain size variable, %Silt/Clay.

Though the creek distinctions are not utilised at all, the resulting divisive clustering and SIMPROF
tests largely divides the sites into their creeks (with a few sub-divisions), Fig. 11.14a. In spite of the
non-trivial stress in this case (0.12), making the MDS (11.14b) only an approximation to the biotic
relationships, it can be still be useful to indicate the sub-groupings, by increasingly fainter dividing
lines, and the thresholds from the LINKTREE run, manually on the ordination.

Example: Fal estuary nematodes



Fig. 11.14. Fal estuary nematodes {f}. a) Constrained divisive clustering (LINKTREE, using y axis
scale A%, of arbitrary equi-steps), and b) nMDS of the 27 sites (in 5 creeks, see map in Fig. 9.3: R
estronguet, Mylor, Pill, St Just, Percuil), based on fourth-root transformed counts and Bray-Curtis
similarities. Divisions subject to thresholds on two environmental variables: sediment Cu
concentration and %Silt/Clay ratio. Dashed lines and grey letters on the dendrogram denote
groupings not supported by SIMPROF. Supported divisions identified by the same letters on the
MDS, together with the inequalities ‘explaining’ them.

¶  De'Ath (2002)  introduced this idea into ecology as ‘multivariate regression trees’, extending the
‘classification and regression trees’ (CART) routines found in major statistics packages such as S-
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Plus.  Clarke, Somerfield & Gorley (2008)  adapt this technique to be consistent with PRIMER’s non-
parametric approach, and therefore use binary clustering divisions based on optimising the rank-
based ANOSIM R statistic rather than, for example, maximising among- group sums of squares.
They use the terminology ‘linkage trees’ since the method has little to do with model-based
‘regression’ as such (a historical term arising from the ‘regression to the mean’ seen when the
slope of a linear relationship declines as the residual variance increases).

† As explained on page 3.6 we are not using ANOSIM as a test here, merely exploiting its very
useful role as a measure of separation between groups of samples in multivariate space. Note
therefore that the resemblance matrix among samples for each new set is re-ranked in order to
calculate the R values for all the possible subsets from the next division. There are no constraints
that subsets should be of comparable size. PRIMER does allow the user to debar groups of fewer
than n samples (n specified) but there seems no good reason to rule out e.g. singleton groups, or
not to split a group of less than n samples, if a SIMPROF test would allow it. (Note, however, that

SIMPROF will never split a group of two samples, page 3.5). PRIMER can also allow a split not to be
made if R does not exceed a threshold value – see later.

§ This is to make it possible to display labels or factor levels and symbols for the samples, rather
than the previous LINKTREE format in PRIMER v6 (the ‘classic’ style of Fig. 11.13b) which was
restricted to using sample numbers. In the new form, it can be incorporated into shade plots, see
the sample axis in Fig. 7.8.

‡ LINKTREE can also sometimes succeed because of its total lack of assumptions and thus great
flexibility. An (over)simple characterisation is that DISTLM (multivariate multiple linear regression
in PERMANOVA+) assumes linearity and additivity of the abiotic variables on the high-d community
response, whereas Bio-Env caters for non-linearity but still makes the additivity assumption, i.e.
both are holistic methods applying across the full set of sites. For example, Ht (shore height) did
not feature in Bio-Env results (Table 11.2) and would not do so in DISTLM, because its ‘effect’ is
inconsistent across the sites: 1-4 have a wide range of shore heights yet identical communities
(largely true of sites 7-9 also), whereas the assemblage at site 15 appears to be separated from all
those at 12-19 by the greater shore height (the only variable that makes this split). If, as here, Ht
only appears to be important to the community when the sediment is coarser (MPD>0.21), but
does not matter at all when it is finer (MPD<0.18), Fig. 11.12a, this is exactly the definition of
interaction (non-additivity) of the two abiotic variables in their effect on the biota. By the intuitive

premise for Bio-Env (first paragraph on page 11.4 it is clear that the procedure will be ambivalent
about including Ht in its explanation. Similarly, in modelled multiple regression, whilst DISTLM
could theoretically be extended to include all interaction effects (in addition to all quadratic terms,
to try to allow for the non-linear response) this is usually impossible because of the large number of
model parameters that would then need fitting. LINKTREE is designed to cater for strong non-
linearity through its use of thresholds, and interaction through its compartmentalisation –
explanations are only local to a few sites not global. But it has major drawbacks: no allowance for
sampling variability and an inability to cater sensibly for more than a few variables.
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For this chapter as a whole, two final points need to be made. The topic of experimental and field
survey design for ecologists is a large one, addressed to some extent in the accompanying
PERMANOVA+ manual ( Anderson, Gorley & Clarke (2008) )¶, but this is a problematic area for all
multivariate techniques because of the difficulty of specifying an explicit alternative hypothesis to
the null hypothesis of, for example, no link of an assemblage to abiotic variables. A specified
alternative is required to define power of statistical procedures but there are a myriad of ways in
which individual species can react, even to a single environmental variable (some increase along
an abiotic gradient, some decrease, some increase then decrease, others change little etc), any
combination of which, for each of the variables, will be inferred as a biotic-abiotic link. Formal
power calculations, analogous to those for simple univariate regression (e.g.  Bayne, Clarke &
Moore (1981) ), are a non-starter, and simulation from observed alternatives to the null conditions
are the only possible approach (see, for example,  Somerfield, Clarke & Olsgard (2002) ). However,
in the context of linking biotic and abiotic patterns, it is intuitively clear that this has the greatest
prospect of success if there are a moderately large number of sample conditions, and the closest
possible matching of environmental with biological data. In the case of a number of replicates from
each of a number of sites, this could imply that the biotic replicates would each have a closely-
matched environmental replicate. Without matching of biotic and abiotic samples none of the
methods of this chapter could be used, so data from the two sources will always need averaging up
to the lowest common denominator, giving a one-to-one match of ‘response’ and ‘explanatory’
samples.

Another lesson of the Fal estuary nematode study and the Garroch Head example of Fig 11.9 is the
difficulty of drawing conclusions about causal variables from any observational study. In the
Garroch Head case, four of the abiotic variables were so highly correlated with each other that it
was desirable to omit all but one of them from the computations. There may sometimes be good
external reasons for retaining a particular member of the set but, in general, one of them is chosen
arbitrarily as a proxy for the rest (e.g. in the Garroch Head data, %C was a proxy for the highly
inter-correlated set %C, Cu, Zn, Pb). If that variable does appear to be linked to the biotic pattern
then any member of the subset could be implicated, of course. More importantly, there cannot be a
definitive causal implication here, since each retained variable is also a proxy for any potentially
causal variable which correlates highly with it, but remains unmeasured. Clearly, in an
environmental impact study, a design in which the main pollution gradient (e.g. chemical) is highly
correlated with variations in some natural environmental measures (e.g. salinity, sediment
structure), cannot be very informative, whether the latter variables are measured or not. A
desirable strategy, particularly for the non-parametric multivariate analyses considered here, is to
limit the influence of important natural variables by attempting to select sites which have the same
environmental conditions but a range of contaminant impacts (including control sites† of course).
Even then§, in a purely observational study one can never entirely escape the stricture that any
apparent change in community, with changing pollution impact, could be the result of an
unmeasured and unconsidered natural variable with which the contaminant levels happen to
correlate. Such issues of causality motivate the following chapter on experimental approaches.

11.7 Concluding remarks
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¶  Green (1979)  also provides some useful guidelines, mainly on field observational studies, and 

Underwood (1997)  concentrates on design of field manipulative experiments; both books are
largely concerned with univariate data but many of the core issues are common to all analyses.

† Note the plurality;  Underwood (1992)  argues persuasively that impact is best established
against a baseline of site-to-site variability in control conditions.

§ And in spite of impressive modern work on causal models that bring a much-needed sense of
discipline to the selection of abiotic variables and prior modelling of causal links among variables

and responses, see  Paul & Anderson (2013) .
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