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Principal Co-ordinates Analysis

The two main weaknesses of PCA, identified at the end of Chapter 4, are its inflexibility of
dissimilarity measure and its poor distance-preservation. The first problem is addressed in an
important paper by  Gower (1966) , describing an extension to PCA termed Principal Co-ordinates
Analysis (PCO), also sometimes referred to as classical scaling. This allows a wider definition of
distance than simple Euclidean distance in the species space (the basis of PCA), but was initially
restricted to a specific class of resemblance measures for which the samples could be represented
by points in some reconfigured high-dimensional (real) space, in which Euclidean distance between
two points is just the (non-Euclidean) resemblance between those samples. Effectively none of the
most useful biological resemblance coefficients fall into this class – the high-d space representing
those dissimilarities has both real and imaginary axes – but it has become clearer in the
intervening decades that much useful inference can still be performed in this complex space, e.g. 
McArdle & Anderson (2001) ,  Anderson (2001a) ,  Anderson (2001b) . (This is essentially the space
in which the PERMANOVA+ add-on routines to the PRIMER software carry out their core analyses).
PCO can thus be applied completely generally to any resemblance measure but the final step is
again a projection onto a low-dimensional ordination space (e.g. a 2-dimensional plane), as in
ordinary PCA. It follows that PCA is just a special case of PCO, when the original dissimilarity is just
Euclidean distance, but note that PCO is still subject to the second criticism of PCA: its lack of
emphasis on distance-preservation when the information is difficult to represent in a low number of
dimensions.
 

Detrended Correspondence Analysis

Correspondence analyses are a class of ordination methods originally featuring strongly in French
data-analysis literature (for an early review in English see  Greenacre (1984) ). Key papers in
ecology are  Hill (1973a)  and  Hill & Gauch (1980) , who introduced detrended correspondence
analysis (DECORANA). The methods start from the data matrix, rather than a resemblance
measure, so are rather inflexible in their definition of sample dissimilarity; in effect, multinomial
assumptions generate an implicit dissimilarity measure of chi-squared distance (Chapter 16).
Correspondence analysis (CA) has its genesis in a particular model of unimodal species response to
underlying (unmeasured) environmental gradients. Description is outside the scope of this manual
but good accounts of CA can be found in the works of Cajo ter Braak (e.g. in  Jongman, ter Braak &
Tongeren (1987) ), who has contributed a great deal in this area, not least CCA, Canonical
Correspondence Analysis ( ter Braak (1986) ).¶

The DECORANA version of CA, widely used in earlier decades, has a primary motivation of
straightening out an arch effect in a CA ordination, which is expected on theoretical grounds if
species abundances have unimodal (Guassian) responses along a single strong environmental

5.1 Other ordination methods
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gradient. Where such models are not appropriate, it is unclear what artefacts the algorithms may
introduce into the final picture. In the  Hill & Gauch (1980)  procedure, the detrending is essentially
carried out by first splitting the ordination space into segments, stretching or shrinking the scale in
each segment and then realigning the segments to remove wide-scale curvature. For some people,
this is uncomfortably close to attacking the data with scissors and glue and, though the method is
not as subjective as this would imply, some arbitrary decisions about where and how the
segmentation and rescaling are defined are hidden from the user in the software code. Thus  Pielou
(1984)  and others criticized DECORANA for its ‘overzealous’ manipulation of the data. It is also
unfortunate that the multivariate methods which were historically applied in ecology were often
either poorly suited to the data or were based on conceptually complex algorithms (e.g.
DECORANA and TWINSPAN,  Hill (1979a)  and  Hill (1979b) ), erecting a communication barrier
between data analyst and ecologist.

The ordination technique which is adopted in this manual’s strategy, non-metric MDS, is itself a
complex numerical algorithm but it will be argued that it is conceptually simple. It makes few (if
any) model assumptions about the form of the data, and the link between the final picture and the
user’s original data is relatively transparent and easy to explain. Importantly, it addresses both the
major criticisms of PCA made earlier: it has great flexibility both in the definition and conversion of
dissimilarity to distance and its rationale is the preservation of these relationships in the low-
dimensional ordination space.

¶ A convenient way of carrying out CA-related routines is to use the excellent CANOCO package, 

ter Braak & Smilauer (2002) .
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The method of non-metric MDS was introduced by  Shepard (1962)  and  Kruskal (1964) , for
application to problems in psychology; a useful introductory text is  Kruskal & Wish (1978) , though
the applications given are not ecological. Generally, we use the term MDS to refer to Kruskal’s non-
metric procedure (though if there is any risk of confusion, nMDS is used). Metric MDS (always
mMDS) is generally less useful but will be discussed in specific contexts later in the chapter.

The starting point is the resemblance matrix among samples (Chapter 2). This can be whatever
similarity matrix is biologically relevant to the questions being asked of the data. Through choice of
coefficient and possible transformation or standardisation, one can choose whether to ignore joint
absences, emphasise similarity in common or rare species, compare only % composition or allow
sample totals to play a part, etc. In fact, the flexibility of (n)MDS goes beyond this. It recognises the
essential arbitrariness of absolute similarity values: Chapter 2 shows that the range of values taken
can alter dramatically with transformation (often, the more severe the transformation, the higher
and more compressed the similarity values become). There is no clear interpretation of a
statement like ‘the similarity of samples 1 and 2 is 25 less than, or half that of, samples 1 and 3’. A
transparent interpretation, however, is in terms of the rank values of similarity to each other, e.g.
simply that ‘sample 1 is more similar to sample 2 than it is to sample 3’. This is an intuitively
appealing and very generally applicable base from which to build a graphical representation of the
sample patterns and, in effect, the ranks of the similarities are the only information used by a non-
metric MDS ordination.

The purpose of MDS can thus be simply stated: it constructs a ‘map’ or configuration of the
samples, in a specified number of dimensions, which attempts to satisfy all the conditions imposed
by the rank (dis)similarity matrix, e.g. if sample 1 has higher similarity to sample 2 than it does to
sample 3 then sample 1 will be placed closer on the map to sample 2 than it is to sample 3.
 

Example: Loch Linnhe macrofauna

This is illustrated in Table 5.1 for the subset of the Loch Linnhe macrofauna data used to show
hierarchical clustering (Table 3.2). Similarities between $\sqrt{} \sqrt{}$-transformed counts of the
four year samples are given by Bray-Curtis similarity coefficients, and Table 5.1 then shows the
corresponding rank similarities. (The highest similarity has the lowest rank, 1, and the lowest
similarity the highest rank, n(n-1)/2.) The MDS configuration is constructed to preserve the
similarity ranking as Euclidean distances in the 2-dimensional plot: samples 2 and 4 are closest, 2
and 3 next closest, then 1 and 4, 3 and 4, 1 and 2, and finally, 1 and 3 are furthest apart. The
resulting figure is a more informative summary than the corresponding dendrogram in Chapter 3,
showing, as it does, a gradation of change from clean (1) to progressively more impacted years (2
and 3) then a reversal of the trend, though not complete recovery to the initial position (4).

5.2 Non-metric multidimensional
scaling (MDS)
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Though the mechanism for constructing such MDS plots has not yet been described, two general
features of MDS can already be noted:

1. MDS plots can be arbitrarily scaled, located, rotated or inverted. Clearly, rank order
information about which samples are most or least similar can say nothing about which
direction in the MDS plot is up or down, or the absolute distance apart of two samples:
what is interpretable is relative distances apart, in whatever direction.
 

2. It is not difficult in the above example to see that four points could be placed in two
dimensions in such a way as to satisfy the similarity ranking perfectly.‡ For more realistic
data sets, though, this will not usually be possible and there will be some distortion (stress
) between the similarity ranks and the corresponding distance ranks in the ordination. This
motivates the principle of the MDS algorithm: to choose a configuration of points which
minimises this degree of stress, appropriately measured.

Table 5.1. Loch Linnhe macrofauna {L} subset. Abundance array after $\sqrt{} \sqrt{}$-transform,
the Bray-Curtis similarities (as in Table 3.2), the rank similarity matrix and the resulting 2-
dimensional MDS ordination.
 

Example: Exe estuary nematodes

The construction of an MDS plot is illustrated with data collected by  Warwick (1971)  and
subsequently analysed in this way by  Field, Clarke & Warwick (1982) . A total of 19 sites from
different locations and tide-levels in the Exe estuary, UK, were sampled bi-monthly at low spring
tides over the course of a year, between October 1966 and September 1967.

Three replicate sediment cores were taken for meiofaunal analysis on each occasion, and
nematodes identified and counted. This analysis here considers only the mean nematode
abundances across replicates and season (seasonal variation was minimal) and the matrix consists
of 140 species found at the 19 sites.

This is not an example of a pollution study: the Exe estuary is a relatively pristine environment. The
aim here is to display the biological relationships among the 19 stations and later to link these to
the environmental variables (granulometry, interstitial salinity etc.) measured at these sites, to
reveal potential determinants of nematode community structure. Fig. 5.1 shows the 2-dimensional
MDS ordination of the 19 samples, based on $\sqrt{} \sqrt{}$-transformed abundances and a
Bray-Curtis similarity matrix. Distinct clusters of sites emerge (in agreement with those from a
matching cluster analysis), bearing no clear-cut relationship to geographical position or tidal level
of the samples. Instead, they appear to relate to sediment characteristics and these links are
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discussed in Chapter 11. For now the question is: what are stages in the construction of Fig. 5.1?

Fig. 5.1. Exe estuary nematodes {X}. MDS ordination of the 19 sites based on √√-transformed
abundances and Bray-Curtis similarities (stress = 0.05).
 

MDS algorithm

The non-metric MDS algorithm, as first employed in Kruskal’s original MDSCAL program for
example, is an iterative procedure, constructing the MDS plot by successively refining the positions
of the points until they satisfy, as closely as possible, the dissimilarity relations between samples.§
It has the following steps.

1. Specify the number of dimensions (m) required in the final ordination. If, as will usually be
desirable, one wishes to compare configurations in different dimensions then they have to
be constructed one at a time. For the moment think of m as 2.
 

2. Construct a starting configuration of the n samples. This could be the result of an
ordination by another method, for example PCA or PCO, but there are advantages in using
just a random set of n points in m (=2) dimensions.
 

3. Regress the interpoint distances from this plot on the corresponding dissimilarities. Let
{$d _ {jk}$} denote the distance between the jth and kth sample points on the current
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ordination plot, and {$\delta _ {jk}$} the corresponding dissimilarity in the original
dissimilarity matrix (e.g. of Bray-Curtis coefficients, or whatever resemblance measure is
relevant to the context). A scatter plot is then drawn of distance against dissimilarity for
all n(n–1)/2 such pairs of values. This is termed a Shepard diagram and Fig. 5.2 shows the
type of graph that results. (In fact, Fig. 5.2 is at a late stage of the iteration, corresponding
to the final 2-dimensional configuration of Fig. 5.1; at earlier stages the graph will appear
similar though with a greater degree of scatter). The decision that characterises different
ordination procedures must now be made: how does one define the underlying relation
between distance in the plot and the original dissimilarity?

There are two main approaches.

a) Fit a standard linear regression of $d$ on $\delta$, so that final distance is constrained to be
proportional to original dissimilarity. This is metric MDS (mMDS). (More flexible would be to fit some
form of curvilinear regression model, termed parametric MDS, though this is rarely seen.)

b) Perform a non-parametric regression of $d$ on $\delta$ giving rise to non-metric MDS. Fig. 5.2
illustrates the non-parametric (monotonic) regression line. This is a ‘best-fitting’ step function
which moulds itself to the shape of the scatter plot, and at each new point on the x axis is always
constrained to either remain constant or step up. The relative success of non-metric MDS, in
preserving the sample relationships in the distances of the ordination plot, comes from the
flexibility in shape of this non-parametric regression line. A perfect MDS was defined before as one
in which the rank order of dissimilarities was fully preserved in the rank order of distances.
Individual points on the Shepard plot must then all be monotonic increasing: the larger a
dissimilarity, the larger (or equal) the corresponding distance, and the non-parametric regression
line is a perfect fit. The extent to which the scatter points deviate from the line measures the
failure to match the rank order dissimilarities, motivating the following.
 

4. Measure goodness-of-fit of the regression by a stress coefficient (Kruskal’s stress formula
1):
$$ Stress = \sqrt{ \sum_j \sum_k ( d_ {jk} - \hat{d}_ {jk} ) ^ 2 / \sum_j \sum_k d _ {jk}^2
} \tag{5.1} $$
where $\hat{d} _ {jk}$ is the distance predicted from the fitted regression line
corresponding to dissimilarity $\delta _ {jk}$. If $d _ {jk} = \hat{d} _ {jk}$ for all the
n(n–1)/2 distances in this summation, the stress is zero. Large scatter clearly leads to
large stress and this can be thought of as measuring the difficulty involved in compressing
the sample relationships into two (or a small number) of dimensions. Note that the
denominator is simply a scaling term: distances in the final plot have only relative not
absolute meaning and the squared distance term in the denominator makes sure that
stress is a dimensionless quality.
 

5. Perturb the current configuration in a direction of decreasing stress. This is perhaps the
most difficult part of the algorithm to visualise and will not be detailed; it is based on
established techniques of numerical optimisation, in particular the method of steepest
descent. The key idea is that the regression relation is used to calculate the way stress
changes for small changes in the position of individual points on the ordination, and points



are then moved to new positions in directions which look like they will decrease the stress
most rapidly.
 

6. Repeat steps 3 to 5 until convergence is achieved. The iteration now cycles around the
two stages of a new regression of distance on dissimilarity for the new ordination
positions, then further perturbation of the positions in directions of decreasing stress. The
cycle stops when adjustment of points leads to no further improvement in stress¶ (or
when, say, 100 such regression/steepest descent/regression/… cycles have been
performed without convergence).

Fig. 5.2. Exe estuary nematodes {X}. Shepard diagram of the distances (d) in the MDS plot (Fig.
5.1) against the dissimilarities ($\delta$) in the Bray-Curtis matrix. The line is the fitted non-
parametric regression; stress (=0.05) is a measure of scatter about the line in the vertical
direction.
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Features of the algorithm

Local minima. Like all iterative processes, especially ones this complex, things can go wrong! By a
series of minor adjustments to the parameters at its disposal (the co-ordinate positions in the
configuration), the method gradually finds its way down to a minimum of the stress function. This is
most easily envisaged in three dimensions, with just a two-dimensional parameter space (the x, y
plane) and the vertical axis (z) denoting the stress at each (x, y) point. In reality the stress surface
is a function of more parameters than this of course, but we have seen before how useful it can be
to visualise high-dimensional algebra in terms of three-dimensional geometry. A relevant analogy
is to imagine a rambler walking across a range of hills in a thick fog, attempting to find the lowest
point within an encircling range of high peaks. A good strategy is always to walk in the direction in
which the ground slopes away most steeply (the method of steepest descent, in fact) but there is
no guarantee that this strategy will necessarily find the lowest point overall, i.e. the global
minimum of the stress function. The rambler may reach a low point from which the ground rises in
all directions (and thus the steepest descent algorithm converges) but there may be an even lower
point on the other side of an adjacent hill. He is then trapped in a local minimum of the stress
function. Whether he finds the global or a local minimum depends very much on where he starts
the walk, i.e. the starting configuration of points in the ordination plot.

Such local minima do occur routinely in all MDS analyses, usually corresponding to configurations
of sample points which are only slightly different to each other. Sometimes this may be because
there are one or two points which bear little relation to any of the other samples and there is a
choice as to where they may best be placed, or perhaps they have a more complex relationship
with other samples and may be difficult to fit into (say) a 2-dimensional picture.

There is no guaranteed method of ensuring that a global minimum of the stress function has been
reached; the practical solution is therefore to repeat the MDS analysis several times starting with
different random positions of samples in the initial configuration (step 2 above). If the same (lowest
stress) solution re-appears from a number of different starts then there is a strong assurance,
though never a guarantee, that this is indeed the best solution. Note that the easiest way to
determine whether the same solution has been reached as in a previous attempt is simply to check
for equality of the stress values; remember that the configurations themselves could be arbitrarily
rotated or reflected with respect to each other.† In genuine applications, converged stress values
are rarely precisely the same if configurations differ. (Outputting stress values to 3 d.p. can help
with this, though solutions which are the same to 2 d.p. will be telling you the same story, in
practice).

Degenerate solutions can also occur, in which groups of samples collapse to the same point (even
though they are not 100% similar), or to the vertices of a triangle, or strung out round a circle. In
these cases the stress may go to zero. (This is akin to our rambler starting his walk outside the
encircling hills, so that he sets off in totally the wrong direction and ends up at the sea!).
Artefactual solutions of this sort are relatively rare and easily seen in the MDS plot and the Shepard
diagram (the latter may have just a single step at one end): repetition from different random starts
will find many solutions which are sensible. (In fact, a more likely cause of a plot in which points
tend to be placed around the circumference of a circle is that the input matrix is of similarities
when the program has been told to expect dissimilarities, or vice-versa; in such cases the stress
will be very high.)



A much more common form of degenerate solution is repeatable and is a genuine result of a
disjunction in the data. For example, if the data split into two well-separated groups for which
dissimilarities between the groups are much larger than any within either group, then there may be
no yardstick within our rank-based approach for determining how far apart the groups should be
placed in the MDS plot. Any solution which places the groups ‘far enough’ apart to satisfy the
conditions may be equally good, and the algorithm can then iterate to a point where the two
groups are infinitely far apart, i.e. the group members collapse on top of each other, even though
they are not 100% similar (a commonly met special case is when one of the two groups consists of
a single outlying point). There are two solutions:

a) split the data and carry out an MDS separately on the two groups (e.g. use ‘MDS subset’ in
PRIMER);

b) neater is to mix mostly non-metric MDS with a small contribution of metric MDS. The ‘Fix
collapse’ option in the PRIMER v7 MDS routine offers this, with the stress defined as a default of
(0.95 nMDS stress + 0.05 mMDS stress). The ordination then retains the flexibility of the rank-
based solution, but a very small amount of metric stress is usually enough to pin down the relative
positions of the two groups (in terms of the metric dissimilarity between groups to that within
them); the process does not appear to be at all sensitive to the precise mixing proportions. An
example is given later in this chapter.

Distance preservation. Another feature mentioned earlier is that in MDS, unlike PCA, there is not
any direct relationship between ordinations in different numbers of dimensions. In PCA, the 2-
dimensional picture is just a projection of the 3-dimensional one, and all PC axes can be generated
in a single analysis. With MDS, the minimisation of stress is clearly a quite different optimisation
problem for each ordination of different dimensionality; indeed, this explains the greater success of
MDS in distance-preservation. Samples that are in the same position with respect to (PC1, PC2)
axes, though are far apart on the PC3 axis, will be projected on top of each other in a 2-
dimensional PCA but they will remain separate, to some degree, in a 2-dimensional as well as a 3-
dimensional MDS.

Even though the ultimate aim is usually to find an MDS configuration in 2- or 3-dimensions it may
sometimes be worth generating higher-dimensional solutions⸙: this is one of several ways in which
the advisability of viewing a lower-dimensional MDS can be assessed. The comparison typically
takes the form of a scree plot, a line plot in which the stress (y axis) is plotted as a function of the
number of dimensions (x axis). This and other diagnostic tools for reliability of MDS ordinations are
now considered.

‡ In fact, there are rather too many ways of satisfying it and the algorithm described in this chapter
will find slightly different solutions each time it is run, all of them equally correct. However, this is
not a problem in genuine applications with (say) six or more points. The number of similarities
increases roughly with the square of the number of samples and a position is reached very quickly
in which not all rank orders can be preserved and this particular indeterminacy disappears.

§ This is also the algorithm used in the PRIMER nMDS routine. The required input is a similarity
matrix, either as calculated in PRIMER or read in directly from Excel, for example.



¶ PRIMER7 has an animation option which allows the user to watch this iteration take place, from
random starting positions.

† The arbitrariness of orientation needs to be borne in mind when comparing different ordinations
of the same sample labels; the PRIMER MDS routine helps by automatically rotating the MDS co-
ordinates to principal axes (this is not the same thing as PCA applied to the original data matrix!)
but it may still require either or both axes to be reflected to match the plots. This is easily
accomplished manually in PRIMER but, in cases where there may be less agreement (e.g. visually
matching ordination plots from biota and environmental variables), PRIMER v7 also implements an

automatic rotation/reflection/rescaling routine (Align graph), using  Gower (1971) ’s Procrustes

analysis (see also Chapter 11).

⸙The PRIMER v7 MDS routine permits a large range of dimensions to be calculated in one run; a
comparison not just of the stress values (scree plot) but also of the changing nature of the Shepard
plots can be instructive. For each dimension, the default is now to calculate 50 random restarts,
independently of solutions in other dimensions; this is a change from PRIMER v6 where the first 2
axes of the 3-d solution were used to start the 2-d search. Whilst this reduced computation time, it
could over-restrict the breadth of search area; ever increasing computer power makes this a
sensible change. The results window gives the stress values for all repeats, and the co-ordinates of
the best (lowest stress) solutions for each dimension can be sent to new worksheets.
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1. Is the stress value small? By definition, stress reduces with increasing dimensionality of
the ordination; it is always easier to satisfy the full set of rank order relationships among
samples if there is more space to display them. The scree plot of best stress values in 2,
3, 4,.. dimensions therefore always declines. Conventional wisdom is to look for a
‘shoulder’ in this plot, indicating a sudden improvement once the ‘correct’ dimensionality
is found, but this rarely happens. It is also to miss the point about MDS plots: they are
always approximations to the true sample relationships expressed in the resemblance
matrix. So for testing and many other purposes in this manual’s approach we will use the
full resemblance matrix. The 2-d and 3-d MDS ordinations are potentially useful to give an
idea of the main features of the high dimensional structure, so the valid question is
whether they are a usable approximation or likely to be misleading.
One answer to this is through empirical evidence and simulation studies of stress values.
Stress increases not only with reducing dimensionality but also with increasing quantity of
data, but a rough rule-of-thumb, using the stress formula (5.1), is as follows.†  

Stress <0.05 gives an excellent representation with no prospect of misinterpretation (a perfect
representation would probably be one with stress <0.01 since numerical iteration procedures often
terminate when stress reduces below this value§).
 

Stress <0.1 corresponds to a good ordination with no real prospect of a misleading interpretation;
higher-dimensional solutions will probably not add any additional information about the overall
structure (though the fine structure of any compact groups may bear closer examination).
 

Stress <0.2 still gives a potentially useful 2-dimensional picture, though for values at the upper
end of this range little reliance should be placed on the detail of the plot. A cross-check of any
conclusions should be made against those from an alternative method (e.g. the superimposition of
cluster groups suggested in point 5 below), higher-dimensional solutions examined or ways founds
of reducing the number of samples whose inter-relationships are being represented, by averaging
over replicates, times, sites etc or by selection of subsets of samples to examine separately, in
turn.
 

Stress >0.3 indicates that the points are close to being arbitrarily placed in the ordination space.
In fact, the totally random positions used as a starting configuration for the iteration usually give a
stress around 0.35–0.45. Values of stress in the range 0.2–0.3 should therefore be treated with a
great deal of scepticism and certainly discarded in the upper half of this range. Other techniques
will be certain to highlight inconsistencies.
 

5.3 Diagnostics: Adequacy of MDS
representation



2. Does the Shepard diagram appear satisfactory? The stress value totals the scatter around
the regression line in a Shepard diagram, for example the low stress of 0.05 for Fig. 5.1 is
reflected in the low scatter in Fig. 5.2. Outlying points in the plot could be identified with
the samples involved; often there are a range of outliers all involving dissimilarities with a
particular sample and this can indicate a point which really needs a higher-dimensional
representation for accurate placement, or simply corresponds to a major error in the data
matrix.
 

3. Is there distortion when similar samples are connected in the ordination plot? One simple
check on the success of the ordination in dissimilarity-preservation is to specify an
arbitrary similarity threshold (in practice try a series of thresholds) and join all samples in
the ordination whose similarity is greater than this threshold. This is shown for the Exe
data in Fig. 5.3a, at a similarity level of 30% and indicates no strong inconsistencies of the
MDS distances with the similarity matrix (e.g. the group 5,10 is further from 6,11 than the
latter is from 7,8,9, and clearly of greater dissimilarity). However, though low, the stress is
not zero, and it is clear that some of this comes from representation of the detailed
structure of the (looser) 12-19 group. For example, Fig. 5.3a shows that sample 15 is more
similar to 16 than it is to either 18 or 17, which is not the picture seen from the 2-d MDS.
 

4. Is the ‘minimum spanning tree’ consistent with the ordination picture? A similar idea to
the above is to construct the minimum spanning tree (MST,  Gower & Ross (1969) ). All
samples are connected on the MDS plot by a single line which is allowed to branch but
does not form a closed loop, such that the sum along this line of the relevant pairwise
dissimilarities is minimised (again, this is taken from the original dissimilarity matrix not
the distance matrix from the ordination points, note). Inadequacy is again indicated by
connections which look unnatural in the context of placement of samples in the MDS
configuration. The MST is shown for the Exe data in Fig. 5.3b and the same point about
stress in the 2-d MDS for samples 15-18 can be seen. Similarly, there is clearly higher-
dimensional structure than can be seen here among samples 12-14 and their relation with
19, since the MST shows that 12 is more similar to 13 than it is to the apparently
intermediate point 14, and the MST does not take the apparently shortest route to sample
19. A lower stress must be obtained for a 3-d MDS (it drops a little to 0.03 here), and Fig.
5.3c of the 3-d MDS does show, for example, that points 12,13 are close and 14 a little
separated, as Figs. 5.3a, 5.3b and the cluster analysis Fig. 5.4 would all suggest. (Viewing
3-d pictures in 2-d is not always easy but can be very much clearer with dynamic rotation
of the 3-d plot, which is allowed in PRIMER as with many other plotting programs). When
2-d stress is as low, as it is here, the extra difficulty of displaying a 3-d solution for such a
marginal improvement must be of doubtful utility, but in many cases there will be real
interpretational gains in moving to a 3-d MDS solution.

https://learninghub.primer-e.com/link/224#bkmrk-gower1969a
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Fig. 5.3. Exe estuary nematodes {X}. a) & b) Two-dimensional MDS configuration, as in Fig. 5.1
(stress = 0.05), with:
a) samples >30% similar (by Bray-Curtis) joined by grey lines;
b) the minimum spanning tree through the dissimilarity matrix indicated by the continuous line.
c) Three-dimensional MDS configuration (stress = 0.03).
 

Fig. 5.4. Exe estuary nematodes {X}. Dendrogram of the 19 sites, using group-average clustering
from Bray-Curtis similarities on $\sqrt{}\sqrt{}$-transformed abundances. The four site groups (1
to 4) identified by Field et al (1982) at a 17.5% similarity threshold are indicated by a dashed line
(they also split the two tightly clustered sub-groups in group 1). A 35% slice is also shown.
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Fig. 5.5. Exe estuary nematodes {X}. Two-dimensional MDS configuration, as in Fig. 5.1 (stress =
0.05), with clusters identified from Fig. 5.4 at similarity levels of 35% (continuous line) and 17.5%
(dashed line).
 

5. Do superimposed groups from a cluster analysis distort the ordination plot? The
combination of clustering and ordination analyses can also be an effective way of
checking the adequacy and mutual consistency of both representations. Slicing the
dendrogram of Fig. 5.4 at two (or more) arbitrary similarity levels determines groupings
which can be identified on the 2-d ordination by a closed region around the points.
(PRIMER uses its own ‘nail and string’ algorithm to produce smoothed convex hulls of the
points in each cluster, where the degree of smoothing is under user control, with a
smoothing parameter of zero resulting in the convex hull). Here the approximately 17.5%
similarity used by the original  Field, Clarke & Warwick (1982)  paper is shown by the
dashed line in Figs. 5.4 and 5.5, and a continuous line shows the clusters produced from
slicing the dendrogram between about 30-45% similarity. It is clear that the agreement
between the MDS and the cluster analysis is excellent: the clusters are well defined and
would be determined in much the same way if one were to select clusters by eye from the
2-dimensional ordination alone. One is not always as fortunate as this, and a more
revealing example of the benefits of viewing clustering and ordination in combination is
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provided by the data of Fig. 4.2.¶

† There are alternative definitions of stress, for example the stress formula 2 option provided in the
MDSCAL and KYST programs. This differs only in the denominator scaling term in (5.1) but is
believed to increase the risk of finding local minima and to be more appropriate for other forms of
multivariate scaling, e.g. multidimensional unfolding, which are outside the scope of this manual.

§ This is under user control with the PRIMER routine, for example, but the default is 0.01.

¶ One option within PRIMER is to run CLUSTER on the ranks of the similarities rather than the

similarities themselves. Whilst not of any real merit in itself (and not the default option),  Clarke

(1993)  argues that this could have marginal benefit when performing a group-average cluster
analysis solely to see how well the clusters agree with the MDS plot: the argument is that the
information utilised by both techniques is then made even more comparable.

https://learninghub.primer-e.com/link/224#bkmrk-clarke1993a
https://learninghub.primer-e.com/link/224#bkmrk-clarke1993a


The nematode abundance data from the dosing experiment {D} at the GEEP Oslo Workshop was
previously analysed by PCA, see Fig. 4.2 and accompanying text. The analysis was likely to be
unsatisfactory, since the % of variance explained by the first two principal components was very
low, at 37%. Fig. 5.6c shows the MDS ordination from the same data, and in order to make a fair
comparison with the PCA the data matrix was treated in exactly the same way prior to analysis.
(The same 26 species were used and a log transform applied before computation of Bray-Curtis
similarities). The stress for the 2-dimensional MDS configuration is moderately high (at 0.16),
indicating some difficulty in displaying the relationships between these 16 samples in two
dimensions. However, the PCA was positively misleading in its apparent separation of the four high
dose (H) replicates in the 2-dimensional space; by contrast the MDS does provide a usable
summary which would probably not lead to serious misinterpretation (the interpretation is that
nothing very much is happening!). This can be seen by superimposing the corresponding cluster
analysis results, Fig. 5.6a, onto the MDS. Two similarity thresholds have been chosen in Fig. 5.6a
such that they (arbitrarily) divide the samples into 5 and 10 groups, the corresponding hierarchy of
clusters being indicated in Fig. 5.6c by thin and thick lines respectively. Whilst it is clear that there
are no natural groupings of the samples in the MDS plot, and the groupings provided by the cluster
analysis must therefore be regarded with great caution, the two analyses are not markedly
inconsistent.

5.4 EXAMPLE: Dosing experiment,
Solbergstrand



Fig. 5.6. Dosing experiment, Solbergstrand mesocosm {D}. Nematode abundances for four
replicates from each of four treatments (control, low, medium and high dose of hydrocarbons and
Cu) after species reduction and log transformation as in Fig. 4.2. a), c) Group-averaged clustering
from Bray-Curtis similarities; clusters formed at two arbitrary levels are superimposed on the 2-
dimensional MDS obtained from the same similarities (stress = 0.16). b), d) Group-average
clustering from Euclidean distances; clusters from two levels are superimposed on the 2-
dimensional PCA of Fig. 4.2. Note the greater degree of distortion in the latter. (Contours drawn by
hand, note, not in PRIMER which only allows convexity of such contours).
 

In contrast, the parallel operation for the PCA ordination clearly illustrates the poorer distance-
preserving properties of this method. Fig. 5.6d repeats the 2-dimensional PCA of Fig. 4.2 but with
superimposed groups from a cluster analysis of the Euclidean distance matrix (the implicit distance
for a PCA) between the 16 samples (Fig. 5.6b). With the same division into five clusters (thin lines)
and ten clusters (thick lines), a much more distorted picture results, with samples that are virtually
coincident in the PCA plot being placed in separate groups and samples appearing distant from
each other forming a common group.

The outcome that would be expected on theoretical grounds is therefore apparent in practice here:
MDS (with a relevant similarity matrix for species data, Bray-Curtis) can provide a more realistic
picture in situations where PCA (on Euclidean distance) gives a distorted representation of the
those distance relationships among samples, because of the projection step: the H samples are not
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clustered together in the dendrogram. In fact, the biological conclusion from this particular study is
entirely negative: the ANOSIM test (Chapter 6) shows that there are no statistically significant
differences in community structure among any of the four dosing levels in this experiment.

https://learninghub.primer-e.com/books/change-in-marine-communities/chapter/chapter-6-testing-for-differences-between-groups-of-samples


In situations where the samples are strongly grouped, as in Figs. 5.4 and 5.5, both clustering and
ordination analyses will demonstrate this, usually in equally adequate fashion. The strength of
ordination is in displaying a gradation of community composition over a set of samples. An
example is provided by Fig. 5.7, of zooplankton data from the Celtic Sea {C}. Samples were
collected from 14 depths, separately for day and night time studies at a single site. The changing
community composition with depth can be traced on the resulting MDS plot (from Bray-Curtis
similarities). There is a greater degree of variability in community structure of the near-surface
samples, with a marked change in composition at about 20-25m; deeper than this the changes are
steady but less pronounced and they step in parallel for day and night time samples.¶ Another
obvious feature is the strong difference in community composition between day and night near-
surface samples, contrasted with their relatively higher similarity at greater depth. Cluster analysis
of the same data would clearly not permit the accuracy and subtlety of interpretation that is
possible from ordination of such a gradually changing community pattern.

5.5 Example: Celtic Sea zooplankton
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Fig. 5.7. Celtic Sea zooplankton {C}. MDS plot for night (boxed) and day time samples (dashed
lines) from 14 depths (5 to 70m, denoted A,B,...,N), taken at a single site during September 1978.
 

Common examples of the same point can be found for time series data, where the construction of
a time trajectory by connecting points on an ordination (sometimes, as above, with multiple
trajectories on the same plot, e.g. contrasting time sequences at reference and impacted
conditions) can be a powerful tool in the interpretational armoury from multivariate analysis, and
another example of this point follows

¶ The precise relationships between the day and night samples for the larger depths (F-N) would
now best be examined by an MDS of that data alone, the greater precision resulting from the MDS
then not needing to cater, in the same 2-d picture, for the relationships to (and between) the A-E
samples. This re-analysis of subsets should be a commonly-used strategy in the constant battle to
display high-dimensional information in low dimensions.



Benthic macrofaunal abundances of 251 species were sampled by Dauvin (1984)  at 21 times
between April 1977 and February 1982 (approximately quarterly), at station ‘Pierre Noire’ in the
Bay of Morlaix. Ten grab samples (1m²) of sediment were collected on each occasion and pooled,
thus substantially reducing the contribution of local-scale spatial variability to the ensuing
multivariate analysis, which should allow temporal patterns to be seen more clearly. The time-
series spanned the period of the ‘Amoco-Cadiz’ oil tanker disaster of March 1978; the sampling site
was some 40km from the initial tanker break-up but major coastal oil slicks reached the Bay of
Morlaix, {A}.

The 2-d MDS from Bray-Curtis similarities computed on 4th-root transformed abundances is seen in
Fig. 5.8a, and has succeeded in reducing the 251-d species data to a 2-d plot with only modest
stress (=0.09). It neatly shows: a) the scale of the seasonal cycle prior to the oil-spill (times A to E);
b) marked community change immediately following the spill (time F), and further changes over
the next year or so (G-K); c) a move towards greater stability, with a suggestion that the
community is returning towards the region of its initial state, though it has certainly not achieved
that by the end of the 5-year period; and d) the re-establishment of the seasonal cycle in this latter
phase (J-M, N-Q, R-U).

In fact, this is an astonishingly succinct and meaningful summary of the main pattern of change in
a very speciose data set, and shows well the power of MDS ordinations to capture continuous
change rather than groupings of samples, which is all that a dendrogram displays. The latter is
seen in the differing symbols in Fig 5.8a, used for SIMPROF groups (Chapter 3) from agglomerative
clustering (Fig. 5.8b): eight groups are identified and they do split samples before and after the
spill, and also by season, between winter+spring and summer+autumn periods, even in the last
two years overriding inter-annual differences. The exception to that is over the immediate post-spill
year, in which seasonal differences are not apparent. All of this makes sense and demonstrates the
power of ordination and clustering methods together (literally, for the rotatable Fig. 5.8c, another
PRIMER7 option). On their own, however, in a case where a time course of change is expected, the
supremacy of ordination over cluster analysis is clear (contrast Figs. 5.8 a and b). A simple
dendrogram gives weak interpretation since it lacks ordering, i.e. has no way of associating
clusters with a temporal or spatial gradient (though see the discussion on dendrograms in shade
plots, Chapter 7).

5.6 Example: Amoco-Cadiz oil spill,
Morlaix

https://learninghub.primer-e.com/link/224#bkmrk-dauvin1984a
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Fig. 5.8. Amoco-Cadiz oil spill {A}. Morlaix macrobenthos at 21 times (A to N). For Bray-Curtis on
4th-root transformed abundances: a) 2-d nMDS; b) agglomerative cluster analysis, both using
symbols identifying the 8 groups given by SIMPROF tests; c) 2-d MDS as in (a) with SIMPROF groups
identified and the dendrogram from (b) displayed in the 3rd dimension.

https://learninghub.primer-e.com/uploads/images/gallery/2022-02/ch5fig5-8c-2.jpg


MDS strengths

1. MDS is simple in concept. The numerical algorithm is undeniably complex, but it is always
clear what non-metric MDS is setting out to achieve: the construction of a sample map
whose inter-point distances have the same rank order as the corresponding dissimilarities
between samples.
 

2. It is based on the relevant sample information. MDS works on the sample dissimilarity
matrix not on the original data array, so that there is complete freedom of choice to
define similarity of community composition in whatever terms are biologically most
meaningful.
 

3. Species deletions are unnecessary. Another advantage of starting from the sample
dissimilarity matrix is that the number of species on which it was based is largely
irrelevant to the amount of calculation required. Of course, if the original matrix contained
many species whose patterns of abundance across samples varied widely, and prior
transformation (or choice of similarity coefficient) dictated that all species were given
rather equal weight, then the structure in the sample dissimilarities is likely to be more
difficult to represent in a low number of dimensions. More usually, the similarity measure
will automatically down-weight the contribution of species that are rarer (and thus more
prone to random and uninterpretable fluctuations). There is then no necessity to delete
species, either to obtain reliable low-dimensional ordinations or to make the calculations
viable; the computational scale is determined solely by the number of samples.
 

4. MDS is generally applicable. MDS can validly be used in a wide variety of situations; fewer
assumptions are made about the nature and quality of the data when using non-metric
MDS than (arguably) for any other ordination method. It seems difficult to imagine a more
parsimonious position than stating that all that should be relied on is the rank order of
similarities (though of course this still depends on the data transformation and similarity
coefficient chosen). The step to considering only rank order of similarities, rather than
their actual values, is not as potentially inefficient as it might at first appear, in cases
where the resemblances are genuine Euclidean distances. Provided the number of points
in the ordination is not too small (nMDS struggles when there are only 4 or 5, thus few
dissimilarities to rank), nMDS will effectively reconstruct those Euclidean distances solely
from their rank orders so that metric MDS (mMDS) and nMDS solutions will appear
identical. The great advantage of nMDS, of course, is that it can cope equally well with
very non-Euclidean resemblance matrices, commonplace in biological contexts.
 

5. The algorithm is able to cope with a certain level of ‘missing’ similarities. This is not a
point of great practical importance because resemblances are generally calculated from a
data matrix. If that has a missing sample then this results in missing values for all the
similarities involving that sample, and MDS could not be expected to ‘make up’ a sensible

5.7 MDS strengths and weaknesses



place to locate that point in the ordination! Occasionally, however, data arrives directly as
a similarity matrix and then MDS can cleverly stitch together an ordination from
incomplete sets of similarities, e.g. knowing the similarities A to (B, C, D) and B to (C, D)
tells you quite a lot about the missing similarity of C to D. And if, as noted above, there
are a reasonable number of points, so a fairly rich set of ranks, even nMDS (as found in
PRIMER) would handle such missing similarities.
 

MDS weaknesses

1. MDS can be computationally demanding. The vastly improved computing power of the last
two decades has made it comfortable to produce MDS plots for several hundred samples,
with numerous random restarts (by default PRIMER now does 50), in a matter of a few
seconds. However, for n in the thousands, it is still a challenging computation (processor
time increases roughly proportional to n2). It should be appreciated, though, that larger
sample sizes generally bring increasing complexity of the sample relationships, and a 2 or
3-dimensional representation is unlikely to be adequate in any case. (Of course this last
point is just as true, if not more true, for other ordination methods). Even where it is of
reasonably low stress, it becomes extremely difficult to label or make sense of an MDS
plot containing thousands of points. This scenario was touched on in Chapter 4 and in the
discussion of Fig. 5.7, where it was suggested that data sets will often benefit by being
sub-divided by the levels of a factor, or on the basis of subsets from a cluster analysis,
and the groups analysed separately by MDS (agglomerative clustering is very fast, for
large numbers of samples¶). Averages for each level might then be input to another MDS
to display the large-scale structure across groups. It is the authors’ experience that, far
too often, users produce ordination plots from all their (replicate) samples and are then
surprised that the ordination, containing many points, has high stress and little apparent
pattern. Not enough use is made of averaging, whether of the transformed data matrix,
the similarities, or the centroids from PCO ( Anderson, Gorley & Clarke (2008) ), taken
over replicates, over sites for each time, over times for each site etc, and entering those
averages into MDS ordinations. In univariate analysis, it is rare to produce a scatter plot of
the replicates themselves: we are much more likely to plot the means for each group, or
the main effects of times and sites etc (for each factor, averaging over the other factors),
and the situation should be no different for multivariate data.
 

2. Convergence to the global minimum of stress is not guaranteed. As we have seen, the
iterative nature of the MDS algorithm makes it necessary to repeat each analysis many
times, from different starting configurations, to be fairly confident that a solution that re-
appears several times (with the lowest observed stress) is indeed the global minimum of
the stress function. Generally, the higher the stress, the greater the likelihood of non-
optimal solutions, so a larger number of repeats is required, adding to the computational
burden. However, the necessity for a search algorithm with no guarantee of the optimal
solution (by comparison with the more deterministic algorithm of a PCA) should not be
seen, as it sometimes has, as a defect of MDS vis-à-vis PCA. Remember that an ordination
is only ever an approximation to the high-dimensional truth (the resemblance matrix) and
it is much better to seek an approximate answer to the right problem (MDS on Bray-Curtis

https://learninghub.primer-e.com/books/change-in-marine-communities/chapter/chapter-4-ordination-of-samples-by-principal-components-analysis-pca
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similarity, say) rather than attack the wrong problem altogether (PCA on Euclidean
distance), however deterministic the computation is for the latter.
 

3. The algorithm places most weight on the large distances. A common feature of most
ordination methods (including MDS and PCA) is that more attention is given to correct
representation of the overall structure of the samples than their local structure. For MDS,
it is clear from the form of equation (5.1) that the largest contributions to stress will come
from incorrect placement of samples which are very distant from each other. Where
distances are small, the sum of squared difference terms will also be relatively small and
the minimisation process will not be as sensitive to incorrect positioning. This is another
reason therefore for repeating the ordination within each large cluster: it will lead to a
more accurate display of the fine structure, if this is important to interpretation. An
example is given later in Figs. 6.2a and 6.3, and is typical of the generally minor
differences that result: the subset of points are given more freedom to expand in a
particular direction but their relative positions are usually only marginally changed.

¶ PRIMER has no explicit constraint on the size of matrices that it can handle; the constraints are
mainly those of available RAM. On a typical laptop PC it is possible to perform sample analyses on
matrices with tens of thousands of variables (species or OTUs) and hundreds of samples without
difficulty; once the resemblance matrix is computed most calculations are then a function of the
number of samples (n), and cluster analysis on hundreds of samples is virtually instantaneous. (The
same is not true of the SIMPROF procedure, note, since it works by permuting the data matrix and
is highly compute-intensive; v7 does however make good use of multi-core processors where these
are available).



Higher dimensional solutions

MDS solutions can be sought in higher dimensions and we noted previously that the stress will
naturally decrease as the dimension increases. Fig 5.9a shows the scree plot of this decreasing
stress (y axis) against the increasing number of dimensions, for the Amoco-Cadiz oil spill data of
Fig. 5.8. There is a suggestion of a ‘shoulder’ in this line plot as the stress drops from 2-d to 3-d,
thereafter declining steadily. The 2-d stress is already a rather satisfactory 0.09 but drops quite
strongly to about 0.05 with the extra dimension, now in our category of an excellent
representation, and so should certainly be further examined. Figs. 5.9c and d show the 2- and 3-d
Shepard plots, and it is clear that the stress (scatter about the fitted monotonic regression line) has
reduced quite sharply. Fig. 5.9b shows the 3-d nMDS itself, with the box rotated to highlight, in the
vertical direction (z), the third MDS axis (as defined by the automatic rotation of the configuration
to principal axes). The seasonal cycle is clearly expressed by changes along this axis, which is
orthogonal to the main inter-annual changes seen in the x, y plane (the latter is very likely to be
the effect of the oil spill and partial recovery, though it is impossible of course to infer that with full
confidence, given the absence of any sort of reference conditions for the natural inter-annual
variation). This example suggests that, even in cases with acceptable 2-d stress, at least the 3-d
solution should be calculated and then rotated to see if it offers further insight†. Here, for example,
the apparent synchrony in direction of the seasonal cycle between the start (A-E) and end (R-U)
years of this time course, seen in the 2-d plot (Fig. 5.8a), is confirmed in the 3-d plot (Fig. 5.9b)
with its more complete separation of season and year. The 3-d plot gives us greater confidence in
this case that the 2-d plot (with its perfectly acceptable stress level) in no way misleads. Of course,
for static displays, one would then always prefer the 2-d plot, as a suitable approximation to the
high-dimensional structure.

5.8 Further nMDS/mMDS
developments



Fig. 5.9. Amoco-Cadiz oil spill {A}. a) Scree plot of stress for nMDS solutions in 2-d to 10-d (data
matrix as in Fig. 5.8); b) 3-d nMDS plot for the 21 times; c) & d) Shepard plots for the 2-d (Fig 5.8)
and 3-d MDS ordinations showing the decreasing scatter about the monotonic regression (stress).
 

(Non-)linearity of the Shepard diagram

Shepard diagrams for the 2-d and 3-d non-metric MDS ordinations for Morlaix were seen in Figs.
5.9c and 5.9d; note how relatively restricted the range of (dis)similarities is, by comparison with
the equivalent plot (Fig. 5.2) for the (spatial) Exe nematode study. The latter exemplifies a long
baseline of community change: there are pairs of sites with no species in common, thus
dissimilarities at the extreme of their range (100). For the (temporal) Morlaix study, the baseline of
change is relatively much shorter, nearly all dissimilarities being between 20 and 50: there is no
complete turnover of species composition through time, nor anything approaching it. This
difference results in a (commonly observed) effect of greater linearity of the relationship between
original dissimilarity and final distance in the MDS plots, as seen in Figs. 5.9c&d. It is linear
regression of the Shepard plot distances vs. dissimilarities, through the origin, which is the basis of
a less-commonly used technique for MDS, metric multidimensional scaling (mMDS), in which
dissimilarities are treated as if they are, in reality, distances. Through the origin is an important
caveat here and it is clear that Figs. 5.9c&d would not be well-fitted by such a regression – the
natural line through these points passes through distance y = 0 at about a dissimilarity of x = 20.
Thus the flexible nMDS fits instead more of a threshold relationship, in which the linearity tails off
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smoothly in a compressed set of distances for the smallest dissimilarities.
 

Metric multi-dimensional scaling (mMDS)

The above example will be returned to later, but there are situations in which a simple linear
regression on the Shepard plot is certainly appropriate, e.g. when the resemblance coefficient is
Euclidean distance, as would be the case for analysis of (normalised) environmental variables.
Then mMDS becomes a viable alternative to PCA (which also uses distances that are Euclidean) but
with the great advantage of ordination which does not resort to a projection of the higher-
dimensional data but sets out to preserve the high-d distances in the low-d plot, as closely as it
can. This lack of distance preservation was one of the two main objections to PCA discussed at the
end of Chapter 4.

The metric MDS algorithm is in principle that earlier described for nMDS, replacing the step
involving monotonic regression with simple linear regression through the origin. This allows the
distances on the mMDS plot to be scaled in the same units as the input resemblance matrix
(usually a distance measure), and there are now therefore measurement scales on the axes of the
plot. Orientation and reflection are again arbitrary (though usually the convention is adopted as for
nMDS, of rotating co-ordinates to principal axes).

Table. 5.2. World map {W}. a) Distance (in miles) between pairs of ‘European’ cities; b) rank
distances (1= closest, 21 = furthest)

(a) London Madrid Moscow Oslo Paris Rome

London

Madrid 774

Moscow 1565 2126

Oslo 723 1474 1012

Paris 215 641 1542 822

Rome 908 844 1491 1253 689

Vienna 791 1122 1033 848 648 477

(b) London Madrid Moscow Oslo Paris Rome

London

Madrid 7

Moscow 20 21

Oslo 6 17 13

Paris 1 3 19 9

Rome 12 10 18 16 5

Vienna 8 15 14 11 4 2

https://learninghub.primer-e.com/books/change-in-marine-communities/chapter/chapter-4-ordination-of-samples-by-principal-components-analysis-pca


A simple example illustrates metric MDS well, that of recreating a map of cities from a triangular
matrix of the road/rail/air distances (or perhaps travel times) between every pair of them, {W} ¶.
Table 5.2a gives the great-circle distances between only 7 cities (called European for brevity
though they include Moscow). The negligible curvature of the earth over the range of about 2000
miles makes it clear that this distance matrix should be enough to locate these cities on a 2-
dimensional map near-perfectly, and Fig. 5.10a shows the result of the metric MDS. As can be seen
from Fig. 5.10c, the Shepard diagram is now precisely a linear fit through the origin, with no scatter
and thus zero stress (stress is defined exactly as for nMDS, equation 5.1). The mMDS has been
manually rotated to align with the conventional N-S direction for such a map, though that is clearly
arbitrary; the axis scales are in miles since the fully metric information is used.

Fig. 5.10. World map {W}. For the distance matrix Table 5.2a & b from 7 ‘European’ cities: a&c)
metric MDS and its associated Shepard plot; b&d) non-metric MDS and Shepard plot (stress = 0 in
all cases)
 

Perhaps more striking is the equivalent nMDS, Fig. 5.10b, which is more or less identical. Though
the Shepard diagram, Fig. 5.10d, is given in terms of distance in the ordination against the input
resemblances (city distances), the monotonic regression fit ensures that all that matters to the
stress (see equation 5.1) are the y axis values of ordination distances, and their departure from the
fitted step function (also zero throughout). Points on the x axis could be stretched and squeezed
differentially along its length, and the step function would stretch and squeeze with them, thus
leaving the stress unchanged (zero, here). In other words, the only information used by the nMDS
is the rank orders of city distances in Table 5.2b. And that is actually quite remarkable: a near-
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perfect map has been obtained solely from all possible statements of the form ‘Oslo is closer to
Paris than Madrid is to Rome’. The general suitability of nMDS comes from the fact that it can
accommodate not just very non-linear Shepard diagrams but, also, where a straight line is the best
relationship (and there are more than a minimal number of relationships to work with) nMDS
should find it: the points in Fig. 5.10d do effectively fall on a straight line through the origin. What
the monotonic regression loses is the link to the original measurements: the y axis scale is in
arbitrary standard deviation units, and nMDS plots have no axis scales that can be related to the
original distances.

This example becomes more interesting still when we expand the data to 34 cities from all around
the globe, again utilising the great-circle (‘direct flight’) inter-city distances from the same atlas
source. Fig. 5.11a shows the nMDS solution in 3-d, and it is again near-perfect, with zero stress.
There is one subtlety here that should not be missed: the supplied great-circle distances are not
the same as the direct (‘through the earth’) distances between cities, represented in the nMDS
plot, and the relationship between the two is not linear. This is clear from the Shepard diagram, Fig.
5.11d: nMDS is able to preserve the rank orders of great-circle distances perfectly in the final 3-d
direct distances only if it can non-linearly transform the supplied distance scale, i.e. ‘squash up’ the
larger distances, where the earth’s curvature matters more than for the smaller distances within a
region. It has not been told how to do this, it does not use any form of parametric relationship to do
it – it simply uses the flexibility of fitting an increasing step function to mould itself to a shape that
will ‘square this particular circle’, and thus reduce the stress (to zero, here). In comparison, mMDS
will also make a reasonable job of this ordination (the final plot is not very different than Fig 5.11a)
but, because it must fit a straight line to the Shepard plot, the stress is not zero but 0.07.

Fig. 5.11. World map {W}. a&d) 3-d non-metric MDS from great-circle distances between every pair
of 34 world cities, and associated Shepard plot of (‘through the earth’) distances in the 3-d plot, y,
against original great-circle distances, x (stress = 0); and for the same data: b&e) 2-d metric MDS
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and Shepard plot (stress = 0.15); c&f) 2-d PCO and Shepard plot (stress undefined for this
technique, since not based on a modelled distance vs. resemblance relation, but the scatter is
clearly greater for plot f than plot e).
 

In addition to turning ‘distance’ matrices into ‘maps’, the other crucial role for ordination methods
is, of course, dimensionality-reduction. This can be well illustrated by seeking a 2-d MDS of the
great-circle distances. Figs. 5.11b&e show the mMDS plot and associated Shepard diagram. The
stress is, naturally, higher, at about 0.15. (The nMDS ‘map’, given by  Clarke (1993) , looks very
similar because the Shepard plot is close to linearity in this case, and has a slightly lower stress of
0.14). We previously categorised such stress values as ‘potentially useful but with detail not always
accurate’, and this is an apt description of the 2-d approximation in plot b) to the true 3-d map of
a). The placement within most regions (denoted by different symbols on the map) is accurate, as
can be seen from the tight scatter in the Shepard plot for smaller distances, but the MDS has
trouble placing cities like San Francisco – it cannot be put on the extreme left of the plot since that
implies that the largest distances in the original matrix are from there to the far-eastern cities of
Beijing, Tokyo, Sydney etc, which is clearly untrue. So the n/mMDS drags San Francisco towards
those cities whilst keeping it away from eastern USA and Europe, which can only ever partly
succeed – it is no surprise to observe therefore that the worst outliers on the Shepard plot involve
San Francisco.

Nonetheless, the mMDS does give a reasonably fair 2-d map of the world and the advantage it can
have over its natural competitor, Principal Co-ordinates (PCO) is well illustrated in the PCO
ordination, Fig. 5.11c. PCO does its dimensionality reduction here by projecting from the 3-d space
to the ‘best’ 2-d plane (‘squashing the earth flat’, in effect). San Francisco is now uncomfortably
close to Lagos and the generally poor distance preservation is evident from a Shepard plot, Fig.
5.11f§, for which the most extreme outliers are, not surprisingly, between San Francisco and the
African cities. In defence of PCO, it does not set out to preserve distances. Its strengths lie
elsewhere, in attempting to partition meaningful structure, seen on the primary axes, from
meaningless residual variability, which it assumes will appear on the higher axes and thus be
‘flattened’ by the projection. However, this example is a salutary one if the main motivation is to
display all of the high-dimensional structure of a resemblance matrix in the best possible way in
low-dimensional space.
 

mMDS for Amoco-Cadiz oil-spill data

Fig. 5.12a shows the result of metric MDS for the Morlaix macrofauna data of Figs. 5.8 and 5.9.
Whilst the metric ordination plot shares the same features as its non-metric counterpart, the stress
value is much higher (at 0.23). Fig. 5.12c shows why: the linear regression through the origin, the
basis of mMDS, is a very poor fit. In spite of the way mMDS is seeking to force the Bray-Curtis
dissimilarities to be interpreted exactly as distances, the data resolutely refuses to go along with
this! It maintains its own linear relationship (not through the origin) as the solution which best
minimises the overall stress; this explains the retention of a similar-looking ordination in spite of
the high stress. But the conflict between the fitted model and the data carries a price: it does not
result in an adequate 2-d representation. For example, it suggests that the apparent ‘recovery’
towards the pre-spill year is better than is justified by the similarities. Also the only significant
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advantage of a successful mMDS here, that the axis scales could then be read as Bray-Curtis
dissimilarities, is entirely nullified. The ordination scale suggests that times G and O (the first week
of August in 1978 and 1980) are separated by a distance (=dissimilarity) of nearly 70, yet the real
value is around 50; this is a direct result of the way the points form a steeper gradient than the
fitted line in Fig. 5.12c. What this figure strongly suggests, in fact, is that we can retain a linear
relationship of distance with dissimilarity, using what we shall term a threshold metric MDS
(tmMDS), by fitting a linear regression to the Shepard plot but with a non-zero intercept (this is an
option in PRIMER7’s mMDS).

Fig. 5.12. Amoco-Cadiz oil-spill {A}. a&c) mMDS for 21 sampling times (data as Fig. 5.8) and
Shepard plot (stress 0.23); b&d) threshold mMDS and Shepard plot (stress 0.12)
 

The resulting tmMDS and Shepard plot are shown in Fig. 5.12 b&d. The model is seen to fit very
well and the stress greatly reduces, to a very acceptable 0.12, (not much higher than the vastly
more flexible step function of nMDS, with stress 0.09). The resulting ordination is now virtually
identical to the 2-d nMDS, Fig. 5.8a, and because the linear threshold model in Fig. 5.12d fits the
dissimilarities so accurately and tightly, we are justified in interpreting the distance scales on the
mMDS axes as dissimilarities, after one adjustment. Dissimilarities of about 20, the intercept on the
x axis in the Shepard plot, are represented in the ordination by zero distance, i.e. the points for
those samples would effectively coincide (samples B and C are a case in point, with dissimilarity of
17, the lowest in the matrix). Points G and O are now separated by about 30 units on the mMDS
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axes, so their dissimilarity is represented as being 20+30 = 50 (and their true dissimilarity is a
slightly fortuitous 49.9!)

Reference was made earlier to the way PCO and PCA hope to display meaningful structure on the
first few axes and remove smaller-scale sampling variation by projecting across the higher PCs.
nMDS can achieve this in a different way, by compression of the scale of smaller dissimilarities,
smoothly ‘tailing in’ samples below a certain dissimilarity to be represented by points closer
together on the plot than could happen under standard mMDS, where the linearity demands that
only points of zero dissimilarity are coincident. Threshold mMDS, using liner regression not through
the origin, is thus a combination of metric and non-metric ideas: points below some fitted threshold
of dissimilarity (20 here) are literally placed on top of each other, so what could be just sampling
variation (e.g. among replicates at the same point in space or time or treatment combination) is
eliminated in that way. Above the threshold, strict linearity is enforced, so such a threshold mMDS
is not well-suited to many cases which have long baseline gradients of assemblage change (such
as Fig. 5.2) where samples have few or no species in common and dissimilarities abut 100. Where
the Shepard plot shows them to be accurate models, with low stress, mMDS and threshold mMDS
bring the advantage of interpretable axis scales for the MDS plot; where they are less accurate,
nMDS is usually much preferable.
 

Combined nMDS and mMDS ordinations

The combination of non-metric and metric concepts can be taken one logical step further‡, to
tackle a problem raised on page 5.2, which can occur with nMDS, that of degenerate solutions with
zero stress arising from the collapse of the ordination into two (or a small number of) groups, in
cases where among- group dissimilarities are all uniformly larger than any within-group ones. The
non-metric algorithm can then place such groups infinitely far apart (in effect) and the display of
any real within-group structure is lost as they collapse to points. The problem does not arise at all
for standard mMDS (or PCO/PCA) since positioning of the most distant samples is constrained by
the simple linear relation with smaller distances.

In cases of collapse where there are very few points in the ordination in the first place, an mMDS
solution is an obvious place to start. In an extreme case, e.g. when ordinating only 3 points, nMDS
will not run at all (the only data available to it are the three ranks 1, 2, 3!). Such cases are not
pathological – they arise very naturally when looking at the equivalent of ‘means plots’ for
multivariate analyses. Just as in univariate analyses, where an ANOVA is followed by plots of the
means, e.g. ‘main effects’ of a factor, so in multivariate analysis, ANOSIM or PERMANOVA tests are
followed by ordinations of the averages or centroids of the factor levels, to interpret the
relationships among groups that have been demonstrated by tests at the replicate level. Such plots
can sometimes have very few points and mMDS can then provide an effective, low stress, solution
to displaying them.

However, for less trivial numbers of points, and in the common cases where Shepard plots are non-
linear and the flexibility of nMDS is required, an effective solution to ‘collapsing plots’ is to combine
mMDS and nMDS stress functions over all dissimilarities, in mixing proportions of (say) 0.05 and
0.95.
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† PRIMER v7 also offers a dynamic display of the ‘evolution’ of a community in 3-d MDS space,
typically over a time course. This is unnecessary for Fig 5.9b because there are only 21 points and
they do not tread similar paths at later times, but the continued study of the macrobenthos at
station ‘Pierre Noire’ in Morlaix Bay over three decades has given rise to a data set of nearly 200
time steps and a complex, multi-layered 3-d plot; it is then fascinating to watch the evolving
trajectory of newer samples over the fading background of older community samples, and thus to
set the potential oil-spill effects in the context of longer-term inter-annual patterns.

¶ Such examples are very useful in explaining the purpose and interpretation of ordinations to the

non-specialist and are quite commonly found (e.g.  Everitt (1978)  starts from a road distance

matrix for UK cities;  Clarke (1993)  uses the example in this chapter of great-circle distances
between world cities, taken from the Reader’s Digest Great World Atlas of 1962).

§ Note that, though a Shepard diagram is not normally produced by a PCO, it can be created in
PRIMER7 (with PERMANOVA+) by saving the 2-d PCO co-ordinates to a worksheet, calculating the
Euclidean distances, using Unravel to generate a single y axis column, and likewise for the original
distances (x), and running a Scatter Plot of y on x. Note also that PCO looks close to being PCA
here, but is not – great-circle distances are not Euclidean.

‡ Though not implemented in the same way as in the PRIMER7 ‘Fix Collapse’ option, and with

different motivation, the hybrid scaling (HS) technique of  Faith, Minchin & Belbin (1987) , and the

semi-strong hybrid scaling (SHS) of  Belbin (1991) , introduced this combination idea into ecology
in the PATN software. Briefly, using the original Kruskal, Young and Seer software (KYST), which
allows combined stress function optimisation, HS mixes mMDS for all dissimilarities below a
specified value with nMDS on the full set of dissimilarities. SHS also uses mMDS below a specified
value but mixes that with nMDS above that value (and also substitutes Guttman’s algorithm for
Kruskal’s). The primary motivation is in reconstruction of ecological gradients driven
environmentally on a transect or grid and the methods do not appear to be optimal for a
‘collapsing MDS’ problem, since neither applies a direct constraint to dissimilarities greater than
the threshold. (E.g. they would not stop the collapse for two well-separated groups whose between-
group dissimilarities all exceeded that threshold.) The approach of this section achieves this by the
common metric scale imposed (very mildly) on the largest distances by smaller ones.
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Anderson, Ford, Feary et al. (2004)  describe macrofauna samples from the Okura estuary {O}, on
the northern fringes of urban Auckland, NZ, taken inter-tidally at 2 times in each of 3 seasons
under 3 sedimentary regimes (High, Medium and Low sedimentation levels), each regime
represented by 5 sites, with 6 cores taken per site at each time. Taking averages¶ of log(x+1)
transformed abundances over the sets of 30 site $\times$ replicate samples gives a very robust
estimate of the community structure at each of the 18 time $\times$ sedimentation levels.
However, calculating Bray-Curtis similarities then leads to the collapsed nMDS plot of Fig. 5.13a,
since all dissimilarities between the highest and lower sedimentation levels (H compared with L
and M) are greater than 40 and those within either of these two groups are all less than 30. The
two sub-plots can be extracted, as shown in insets to Fig. 5.13a (simply achieved in PRIMER by
drawing a box round each collapsed point and taking the ‘MDS subset’ routine), but it is more
instructive to retain these averages on the same ordination. Just a small amount of metric stress
here (5%, though the solution is robust to a wide range of values for the mixing proportion) is
enough to calibrate the relative dissimilarities between the two sedimentation regimes (H and L/M)
to those within them, Fig. 5.13b. The Shepard plots (c and d) show the contrast between a solution
which is degenerate and a valid nMDS ordination: the disjunction in dissimilarities which forced the
original collapse is very clear in both plots. As emphasised by  Anderson, Gorley & Clarke (2008) )
the advantage of the single ordination is seen in the way the seasonal ordering (1=winter/spring,
2=spring/summer, 3=late summer) is matched, across the (large) sedimentation divide.

5.9 Example: Okura estuary
macrofauna
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Fig. 5.13. Okura macrofauna {O}. a&c) Collapsed nMDS and associated Shepard plot from Bray-
Curtis similarities on averages over 30 samples of log transformed abundances of 73 taxa, for 2
times in each season (1-3: Winter-Spring, Spring-Summer and Late Summer) and 3 levels of
sedimentation (High, Medium, Low). Stress$\rightarrow 0$ for collapsed nMDS; subset nMDS plots
for H and L/M separately (insets in a) have stress = 0.04, 0.07.
b&d) nMDS for Fix Collapse option (stress defined as mix 0.95$\times$nMDS +
0.05$\times$mMDS), and the Shepard plot for that nMDS, with stress 0.04.
 

Combining data sets

Another context in which we might want to combine MDS solutions into a single ordination, which
optimises their combined stress function, arises when there is no clear way of merging two data
sets with exactly the same sample labels (same times, sites, treatments etc) but of very different
type. For example, in rocky shores, counts might be made of motile species but area cover of
sessile or colonial organisms, and it may be hard to reconcile those two types of measurement in a
single array. The classic solution to mixed measurement scales is to normalise variables but this
gives each species an equal contribution in defining resemblance, irrespective of their total counts
or area cover, and this may be very undesirable (it can add a great deal of ‘noise’ from rare
species); it is much better to keep the natural internal weightings for each species. Perhaps the
best solution is to convert both matrices onto a common scale (such as biomass or ‘equivalent area
cover’) and merge them into a single array, but an alternative worth considering is to run a
combined nMDS (an option under PRIMER7) which fits separate Shepard plots for each matrix to
common ordination co-ordinates, minimising the average of the two stress values. The result is an
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equal mix of the two sets of information on sample relationships.

Note that it is inevitable that the resulting stress value will be higher than for either of the separate
nMDS ordinations, since it must represent a compromise of two potentially conflicting sets of
relationships; it can only come close to the stress in the separate plots if they have effectively
identical patterns. (The same is not true of merging the two matrices into a single array, of course,
because there the compromise is effected in the calculation of the resemblances).

An example of where a merged matrix is usually not possible but a combined nMDS is a viable
solution is where the matrices to combine require very different dissimilarity measures, such as for
assemblage counts (e.g. Bray-Curtis) and environmental variables which may be driving those
counts (e.g. Euclidean distance). Arguably, there are few convincing examples of why a
compromise MDS is a desirable output here (rather than adopting the approach in Chapter 11 that
we let the two components ‘speak for themselves’ and then seek variables, or sets of variables,
which ‘explain’ the biotic patterns) but an example is given below of the result of a combined MDS,
were it to be needed.

¶ This example is taken from the PERMANOVA+ manual,  Anderson, Gorley & Clarke (2008) . There,
the ‘averages’ are the (theoretically more correct) centroids in the high-dimensional ‘Bray-Curtis
space’ from the full 540 samples, i.e. averaging is performed after similarity calculation not before.
Whilst data averages are not the same as centroids from dissimilarity space (e.g. an averaged
assemblage may not be ‘central’ to individual samples, since it will usually have higher species
richness), it is commonly found that the relationship amongst averages can be very similar to the
relationship amongst centroids, as is seen here when comparing Fig. 5.13a with the PCO of Fig.

3.13 in  Anderson, Gorley & Clarke (2008) .
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Danielidis (1991)  sampled 17 lagoons in E Central Greece for diatom communities (193 species),
and also recorded a suite of 12 water-column variables: temperature, salinity, DO$_2$, pH,
PO$_4$, total P, NH$_3$, NO$_2$, NO$_3$, inorganic N and SiO$_2$. After global square root
transformations and Bray-Curtis dissimilarities are calculated on the species densities, and
selective log transforms (of the nutrients) and Euclidean distances are calculated on the
environmental variables, Fig. 5.14a&b display the resulting separate nMDS ordinations. In this
case, there is a remarkable degree of uniformity in the way these two independent sets of
variables describe the sample patterns, suggesting that the structuring environmental variables for
these communities have been correctly identified (and this idea leads into the BEST technique in
Chapter 11 for further refinement of ‘structuring variable’ selection). A combined nMDS of the two
resemblance matrices is given in Fig. 5.14c. The 2-d stress of 0.13, c.f. 0.09 and 0.08 for the
separate biotic and abiotic plots, shows that one must expect an increased stress even when
agreement is very good.

5.10 Example: Messolongi lagoon
diatoms
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Fig. 5.14. Messolongi diatoms {m}. nMDS plots for17 lagoon sites based on: a) 193 species (from
Bray-Curtis dissimilarities), b) 12 water-column variables (normalised Euclidean distances), c)
combined nMDS, the configuration simultaneously minimising average stress from the biotic and
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abiotic Shepard diagrams. Stress: a) 0.09, b) 0.08, c) 0.13.



1. Non-metric MDS can be recommended as the best general ordination technique available
(e.g.  Everitt (1978) ). Important early studies comparing ordination methods for
community data gave nMDS a high rating (e.g.  Kenkel & Orloci (1986) ) and
improvements in computing power since those early studies have made it even more
attractive. In comparison with (even) older techniques such as PCA, nMDS has a number
of practical advantages stemming from its flexibility and lack of assumptions.

2. When the inter-sample relationships are relatively simple, e.g. there are some strong
clusters or strong gradient of change across all samples, several ordination methods will
perform adequately and give comparable pictures. The main advantage of nMDS is its
greater ability, by comparison with projection-based methods such as PCA or PCO to
better represent relations accurately in low-dimensional space. It outcompetes its metric
form, mMDS, and also PCO, especially in cases where biological coefficients such as Bray-
Curtis are used and there is a strong turnover of species across the sites, times,
treatments etc, such that a fair number of samples have few or no species in common.
Then, the dissimilarity scale becomes strongly compressed in the region of 100% (with
many values at 100, perhaps, as can be seen for the Exe Shepard plot in Fig. 5.2) and the
ability of the monotonic regression to expand this tight range of dissimilarities to wider-
spaced distances is the key to a successful ordination. In contrast, where the Shepard
diagram is fairly linear through the origin, nMDS, mMDS and PCO will often produce
similar ordinations.

3. If the stress is low (say <0.1), an MDS ordination is generally a more useful representation
than a cluster analysis: when the samples are strongly grouped the MDS will reveal this
anyway, and when there is a more gradual continuum of change, or some interest in the
placement of major groups with respect to each other, MDS will display this in a way that
a cluster analysis is quite incapable of doing. For higher values of stress, the techniques
should be thought of as complementary to each other; neither may present the full picture
so the recommendation is to perform both and view them in combination. This may make
it clear which points on the MDS are problematic to position (examining some of the local
minimum solutions can help here¶, as can animation of the iterative procedure), and an
ordination in a higher dimension may prove more consistent with the cluster groupings.
Conversely, the MDS plots may make it clear that some groups in the cluster analysis are
arbitrary subdivisions of a natural continuum.

¶ For example, run the PRIMER MDS routine several times, with a single random starting position on
each occasion, and examine the plots that give a higher stress than the ‘optimal’ one found. In
PRIMER7, run the MDS animation for a number of restarts. Also, outliers on the Shepard diagram
can be identified by clicking on the appropriate point on the plot.

5.11 Recommendations
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