
Table 1.5 summarises some multivariate methods for the four stages, starting with three
descriptive tools: hierarchical clustering (agglomerative or divisive), multi-dimensional scaling
(MDS, usually non-metric) and principal components analysis (PCA).

Table 1.5. Multivariate techniques. Summary of analyses for the four stages.

The first two of these start explicitly from a triangular matrix of similarity coefficients computed
between every pair of samples (e.g. Table 1.6). The coefficient is usually some simple algebraic
measure (Chapter 2) of how close the abundance levels are for each species, averaged over all
species, and defined such that 100% represents total similarity and 0% complete dissimilarity.
There is a range of properties that such a coefficient should possess but still some flexibility in its
choice: it is important to realise that the definition of what constitutes similarity of two
communities may vary, depending on the biological question under consideration. As with the
earlier methods, a multivariate analysis too will attempt to reduce the complexity of the
community data by taking a particular ‘view’ of the structure it exhibits. One in which the emphasis
is on the pattern of occurrence of rare species will be different than a view in which the emphasis is
wholly on the species that are numerically dominant. One convenient way of providing this
spectrum of choice, is to restrict attention to a single coefficient†, that of  Bray & Curtis (1957) ,
which has several desirable properties, but allow a choice of prior transformation of the data. A
useful transformation continuum (see Chapter 9) ranges through: no transform, square root, fourth
root, logarithmic and finally, reduction of the sample information to the recording only of presence
or absence for each species.¶ At the former end of the spectrum all attention will be focused on
dominant counts, at the latter end on the rarer species.

Table 1.6. Frierfjord macrofauna {F}. Bray-Curtis similarities, after $\sqrt{}\sqrt{}$-transformation
of counts, for every pair of replicate samples from sites A, B, C only (four replicates per site).

1.7 Multivariate techniques

https://learninghub.primer-e.com/uploads/images/gallery/2023-02/screenshot-table1-5.png
https://learninghub.primer-e.com/books/change-in-marine-communities/chapter/chapter-2-simple-measures-of-similarity-of-species-abundance-between-samples
https://learninghub.primer-e.com/link/224#bkmrk-bray1957a
https://learninghub.primer-e.com/books/change-in-marine-communities/chapter/chapter-9-transformations-and-dispersion-weighting


A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

A1 –

A2 61 –

A3 69 60 –

A4 65 61 66 –

B1 37 28 37 35 –

B2 42 34 31 32 55 –

B3 45 39 39 44 66 66 –

B4 37 29 29 37 59 63 60 –

C1 35 31 27 25 28 56 40 34 –

C2 40 34 26 29 48 69 62 56 56 –

C3 40 31 37 39 59 61 67 53 40 66 –

C4 36 28 34 37 65 55 69 55 38 64 74 –

For the clustering technique, representation of the communities for each sample is by a
dendrogram (e.g. Fig. 1.7a), linking the samples in hierarchical groups on the basis of some
definition of similarity between each cluster (Chapter 3). This is a particularly relevant
representation in cases where the samples are expected to divide into well-defined groups,
perhaps structured by some clear-cut environmental distinctions. Where, on the other hand, the
community pattern is responding to abiotic gradients which are more continuous, then
representation by an ordination is usually more appropriate. The method of non-metric MDS (
Chapter 5) attempts to place the samples on a ‘map’, usually in two dimensions (e.g. see Fig.
1.7b), in such a way that the rank order of the distances between samples on the map exactly
agrees with the rank order of the matching (dis)similarities, taken from the triangular similarity
matrix. If successful, and success is measured by a stress coefficient which reflects lack of
agreement in the two sets of ranks, the ordination gives a simple and compelling visual
representation of ‘closeness’ of the species composition for any two samples.
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Fig. 1.7. Frierfjord macrofauna {F}. a) Dendrogram for hierarchical clustering (group-average
linking); b) non-metric multi-dimensional scaling (MDS) ordination in two dimensions; both
computed for the four replicates from each of the six sites (A–E, G), using the similarity matrix
partially shown in Table 1.4 (2-d MDS stress = 0.08)

The PCA technique (Chapter 4) takes a different starting position, and makes rather different
assumptions about the definition of (dis)similarity of two samples, but again ends up with an
ordination plot, often in two or three dimensions (though it could be more), which approximates the
continuum of relationships among samples (e.g. Fig. 1.8). In fact, PCA is a rather unsatisfactory
procedure for most species-by-samples matrices, for at least two reasons:

a) it defines dissimilarity of samples in an inflexible way (Euclidean distance in the full-dimensional
species space, Chapter 4), not well-suited to the rather special nature of species abundance data,
with its predominance of zero values;

b) it uses a projection from the higher-dimensional to lower-d space which does not aim to
preserve the relative values of these Euclidean distances in the low-d plot, cf MDS, which has that
rationale.
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Fig. 1.8. Loch Linnhe macrofauna {L}. 2-dimensional principal components analysis (PCA)
ordination of the $\sqrt{} \sqrt{}$-transformed abundances from the 11 years 1963–1973 (% of
variance explained only 57%, and not an ideal technique for such data).

However, a description of the operation of PCA is included here because it is an historically
important technique, the first ordination method to be devised and one which is still commonly
encountered§, and because it comes into its own in the analysis of environmental samples. Abiotic
variables (e.g. physical or contaminant readings) are usually relatively few in number, continuously
scaled, and their distributions can be transformed so that (normalised) Euclidean distances are
appropriate ways of describing the inter-relationships among samples. PCA is then a more
satisfactory low-dimensional summary (albeit still a projection), and even has an advantage over
MDS of providing an interpretation of the plot axes (which are linear in the abiotic variables).

Discriminating sites/conditions from a multivariate analysis requires non-classical hypothesis
testing ideas, since it is totally invalid to make the standard assumptions of normality (which in this
case would need to be multivariate normality of the sometimes hundreds or even thousands of
different species!). Instead, Chapter 6 describes a simple permutation or randomisation test (of the
type first developed by  Mantel (1967) ), which makes very few assumptions about the data and is
therefore widely applicable. In Fig. 1.7b for example, it is clear without further testing that site A
has a different community composition across its replicates than the groups (E, G) or (B, C, D).
Much less clear is whether there is any statistical evidence of a distinction between the B, C and D
sites. A non-parametric test of the null hypothesis of ‘no site differences between B, C and D’ could
be constructed by defining a statistic which contrasts among-site and within-site distances, which
is then recomputed for all possible permutations of the 12 labels (4 Bs, 4 Cs and 4 Ds) among the
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12 locations on the MDS. If these arbitrary site relabellings can generate values of the test statistic
which are similar to the value for the real labelling, then there is clearly little evidence that the
sites are biologically distinguishable. This idea is formalised and extended to more complex sample
designs in Chapter 6. For reasons which are described there it is preferable to compute an ‘among
versus within site’ summary statistic directly from the (rank) similarity matrix rather than the
distances on the MDS plot. This, and the analogy with ANOVA, suggests the term ANOSIM for the
test (Analysis of Similarities,  Clarke & Green (1988) ;  Clarke (1993) ).‡ It is possible to employ the
same test in connection with PCA, using an underlying dissimilarity matrix of Euclidean distances,
though when the ordination is of a relatively small number of environmental variables, which can
be transformed into approximate multivariate normality, then abiotic differences between sites can
use a classical test (MANOVA, e.g.  Mardia, Kent & Bibby (1979) ), a generalisation of ANOVA.

Part of the process of discriminating sites, times, treatments etc., where successful, is the ability to
identify the species that are principally responsible for these distinctions: it is all too easy to lose
sight of the basic data matrix in a welter of sophisticated multivariate analyses of samples.⸸
Similarly, as a result of cluster analyses and associated a posteriori tests for the significance of the
groups of sites/times etc obtained (SIMPROF, Chapter 3), one would want to identify the species
mainly responsible for distinguishing the clusters from each other. Note the distinction here
between a priori groups, identified before examination of the data, for which ANOSIM tests are
appropriate (Chapter 6), and a posteriori groups with membership identified as a result of looking
at the data, for which ANOSIM is definitely invalid; they need SIMPROF.
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Fig. 1.9. Frierfjord macrofauna {F}. Shade plot of 4th-root transformed species (rows) $\times$
samples (columns) matrix of abundances for the 4 replicate samples at each of 6 sites (Fig. 1.1,
Table 1.2). The (linear) grey scale is shown in the key with back-transformed counts.

Species analyses and displays are pursued in Chapter 7, and Fig. 1.9 gives a Shade Plot for the
‘most important’ ~50 species from the 110 recorded from the 24 samples of the Frierfjord
macrobenthic abundance data of Table 1.2. (‘Most important’ is here defined as all the species
which account for at least 1% of the total abundance in one or more of the samples). The shade
plot is a visual representation of the data matrix, after it has been 4th-root transformed, in which
white denotes absence and black the largest (transformed) abundance in the data. Importantly, the
species axis has been re-ordered in line with a (displayed) cluster analysis of the species, utilising
Whittaker’s Index of Association to give the among-species similarities, see Chapters 2 and 7. The
pattern of differences between samples from the differing sites is clearly apparent, at least for the
three main groups seen in the MDS plot of Fig. 1.7, viz. A, (B-D), (E-G). Such plots are also very
useful in visualising the effects of different transformations on the data matrix, prior to similarity
computation (see  Clarke, Tweedley & Valesini (2014)  and Chapter 9). Without transformation, the
shade plot would be largely white space with only a handful of species even visible (and thus
contributing).

Since ANOSIM indicates statistical significance and pairwise tests give particular site differences (
Chapter 6), a ranking of species contributions to the dissimilarity between any specific pair of
groups can be obtained from a similarity percentage breakdown (the SIMPER routine,  Clarke
(1993) ), see Chapter 7.⸙

The clustering of species in shade plots such as Fig. 1.9 can be taken one stage further, to
determine statistical significance of species groupings (a Type 3 SIMPROF test, see Chapter 7). This
identifies groups of species within which the species have statistically indistinguishable patterns of
abundance across the set of samples, and between which the patterns do differ significantly. Fig.
1.10 shows simple line plots for the standardised abundance of 51 species (those accounting for >
1% of the total abundance in any one year) over the 11 years of the Loch Linnhe sampling of Table
1.4 and Fig. 1.8. SIMPROF tests give 7 groups of species (one omitted contains just a single species
found only in 1973). The standardisation puts each species on an equal footing, with its values
summing to 100% across all samples. It can be seen how some species start to disappear, and
others arrive, at the initial levels of disturbance, in the mid-years – some of the latter dying out as
pollution increases in the later years – with further opportunists (Capitellids etc) flourishing at that
point, and then declining with the improvement in conditions in 1973.
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Fig. 1.10. Loch Linnhe macrofauna {L}. Line plots of the 11-year time series for the ‘most
important’ 51 species (see text), with y axis the standardised counts for each species, i.e. all
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species add to 100% across years. The 6 species groups (A-F), and a 7th consisting of a single
species found in only one year, have internally indistinguishable curves (‘coherent species’) but the
sets differ significantly from each other, by SIMPROF tests.

In the determination of stress levels, whilst the multivariate techniques are sensitive (Chapter 14)
and well-suited to establishing community differences associated with different
sites/times/treatments etc., their species-specific basis would appear to make them unsuitable for
drawing general inferences about the pollution status of an isolated group of samples. Even in
comparative studies, on the face of it there is not a clear sense of directionality of change when it
is established that communities at putatively impacted sites differ from those at control or
reference sites in space or time (is the change ‘good’ or ‘bad’?). Nonetheless, there are a few ways
in which directionality has been asserted in published studies, whilst retaining a multivariate form
of analysis (Chapter 15):

a) a meta-analysis: a combined ordination of data from NE Atlantic shelf waters, at a coarse level of
taxonomic discrimination (the effects of taxonomic aggregation are discussed in Chapter 10),
suggests a common directional change in the balance of taxa under a variety of types of pollution
or disturbance ( Warwick & Clarke (1993a) );

b) a number of studies demonstrate increased multivariate dispersion among replicates under
impacted conditions, in comparison to controls ( Warwick & Clarke (1993b) );

c) another feature of disturbance, demonstrated in a spatial coral community study (but with wider
applicability to other spatial and temporal patterns), is a loss of smooth seriation along transects of
increasing depth, again in comparison to reference data in time and space ( Clarke, Warwick &
Brown (1993) ).

Methods which link multivariate biotic patterns to environmental variables are explored in Chapter
11; these are illustrated here by the Garroch Head dump-ground study described earlier (Fig. 1.5).
The MDS of the macrofaunal communities from the 12 sites is shown in Fig. 1.11a; this is based on
Bray-Curtis similarities computed from (transformed) species biomass values.ꞎ

Fig. 1.11. Garroch Head macrofauna {G}. a) MDS ordination of Bray-Curtis similarities from
$\sqrt{}$-transformed species biomass data for the sites shown in Fig. 1.5; b) the same MDS but
with superimposed circles of increasing size, representing increasing carbon concentrations in
matched sediment samples; c) ordination of (log-transformed) carbon, nitrogen and cadmium
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concentrations in the sediments at the 12 sites (2-d MDS stress = 0.05).

Steady change in the community is apparent as the dump centre (site 6) is approached along the
western arm of the transect (sites 1 to 6), then with a mirrored structure along the eastern arm
(sites 6 to 12), so that the samples from the two ends of the transect have similar species
composition. That this biotic pattern correlates with the organic loading of the sediments can best
be seen by superimposing the values for a single environmental variable, such as Carbon
concentration, on the MDS configuration. The bubble plot of Fig. 1.11b represents C values by
circles of differing diameter, placed at the corresponding site locations on the MDS, and the pattern
across sites of the 11 available environmental variables (sediment concentrations of C, N, Cu, Cd,
Zn, Ni, etc.) can be viewed in this way (Chapter 11). This either uses a single abiotic variable at a
time or displays several at once, as vectors – usually unsatisfactorily because it assumes a linear
relationship of the variable to the biotic ordination points – or (more satisfactorily) by segmented
bubble plots in which each variable is only a circle segment, of different sizes but at the same
position on the circle (of the type seen in Figs. 7.14-16; see also  Purcell, Rushworth, Clarke et al.

(2014) .Ɥ

Where bubble plots are not adequate, because the 2- or 3-d MDS is a poor approximation (high
stress) to the biotic similarity matrix, an alternative technique is that of linkage trees (multivariate
regression trees), which carry out constrained binary divisive clustering on the biotic similarities,
each division of the samples (into ever smaller groups) being permitted only where it has an
‘explanation’ in terms of an inequality on one of the abiotic variables (Chapter 11), e.g. “group A
splits into B and C because all sites in group B have salinity > 20ppt but all in group C have salinity
< 20ppt” and this gives the maximal separation of site A communities into two groups. Stopping
the search for new divisions uses the SIMPROF tests that were mentioned earlier, in relation to
unconstrained cluster methods (for a LINKTREE example see Fig. 11.14).

A different approach is required in order to answer questions about combinations of environmental
variables, for example to what extent the biotic pattern can be ‘explained’ by knowledge of the full
set, or a subset, of the abiotic variables. Though there is clearly one strong underlying gradient in
Fig. 1.11a (horizontal axis), corresponding to an increasing level of organic enrichment, there are
nonetheless secondary community differences (e.g. on the vertical axis) which may be amenable
to explanation by metal concentration differences, for example. The heuristic approach adopted
here is to display the multivariate pattern of the environmental data, ask to what extent it matches
the between-site relationships observed in the biota, and then maximise some matching coefficient
between the two, by examining possible subsets of the abiotic variables (the BEST procedure,
Chapters 11 and 16).ȸ

Fig. 1.11c is based on this optimal subset for the Garroch Head sediment variables, namely (C, N,
Cd). It is an MDS plot, using Euclidean distance for its dissimilarities,Ͷ and is seen to replicate the
pattern in Fig. 1.11a rather closely. In fact, the optimal match is determined by correlating the
underlying dissimilarity matrices rather than the ordinations themselves, in parallel with the
reasoning behind the ANOSIM tests, seen earlier.

The suggestion is therefore that the biotic pattern of the Garroch Head sites is associated not just
with an organic enrichment gradient but also with a particular heavy metal. It is important,
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however, to realise the limitations of such an ‘explanation’. Firstly, there are usually other
combinations of abiotic variables which will correlate nearly as well with the biotic pattern,
particularly as here when the environmental variables are strongly inter-correlated amongst
themselves. Secondly, there can be no direct implication of causality of the link between these
abiotic variables and the community structure, based solely on field survey data: the real driving
factors could be unmeasured but happen to correlate highly with the variables identified as
producing the optimal match. This is a general feature of inference from purely observational
studies and can only be avoided formally by ‘randomising out’ effects of unmeasured variables;
this requires random allocation of treatments to observational units for field or laboratory-based
community experiments (Chapter 12).

† Though PRIMER offers nearly 50 of the (dis)similarity/distance measures that have been proposed
in the literature.

¶ The PRIMER routines automatically offer this set of transformation choices, applied to the whole
data matrix, but also cater for more selective transformations of particular sets of variables, as is
often appropriate to environmental rather than species data.

§ Other ordination techniques in common use include: Principal Co-ordinates Analysis, PCO;

Detrended Correspondence Analysis, DCA. Chapter 5 has some brief remarks on their relation to
PCA and nMDS/mMDS but this manual concentrates on PCA and MDS, found in PRIMER; PCO is
available in PERMANOVA+.

‡ PRIMER now performs tests for all 1-, 2- and 3-way crossed and/or nested combinations of factors
in its ANOSIM routine, also including a more indirect test, with a different form of statistic, for
factors (with sufficient levels) which do not have replication within their levels. These are all robust,
non-parametric (rank-based) tests and therefore do not permit the (metric) partition of overall
effects into ‘main’ and ‘interaction’ components. Within a semi-parametric framework (and still by
permutation testing), such partitions are achieved by the PERMANOVA routine within the

PERMANOVA+ add-on to PRIMER,  Anderson, Gorley & Clarke (2008) .

⸸This has been rectified in PRIMER 7, with its greater emphasis on species analyses, such as Shade

plots, SIMPROF tests for coherent species groups, segmented bubble plots etc (Chapter 7).

⸙SIMPER in PRIMER first tabulates species contributions to the average similarity of samples within
each group then of average dissimilarity between all pairs of groups. Two-way and (squared)
Euclidean distance options are given, the latter for abiotic data.

ꞎ Chapter 13, and the meta-analysis section in Chapter 15, discuss the relative merits and

drawbacks of using species abundance or biomass when both are available; in fact, Chapter 13 is a
wider discussion of the advantages of sampling particular components of the marine biota, for a
study on the effects of pollutants.

Ɥ The PRIMER ‘bubble plot’ overlay can be on any ordination type, in 2- or 3-d, and has flexible
colour/scaling options, as well as some scope for using a supplied image as the overlay.
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ȸ The BEST/Bio-Env option in PRIMER optimises the match by examining all combinations of abiotic
variables. Where this is not computationally feasible, the BEST/BVStep option performs a stepwise
search, adding (or subtracting) single abiotic variables at each step, much as in stepwise multiple
regression. Avoidance of a full search permits a generalisation to pattern-matching scenarios other
than abiotic-to-biotic, e.g. BVStep can select a subset of species whose multivariate structure

matches, to a high degree, the pattern for the full set of species (Chapter 16), thus indicating
influential species or potential surrogates for the full community.

Ͷ It is, though, virtually indistinguishable in this case from a PCA, because of the small number of
variables and the implicit use of the same dissimilarity matrix for both techniques.
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