
A natural extension of the ideas of this chapter is from $\alpha$- or ‘spot’ diversity indices to
$\beta$- or ‘turn-over’ diversity. The latter are essentially based on measures of dissimilarity
between pairs of samples, the starting point for most of the methods of this manual. It is intriguing
to ask whether there are natural analogues of some of the widely-used ‘biological’ dissimilarity
coefficients, such as Sørensen (Bray-Curtis on presence/absence data, equation 2.7) or Kulczynski
(P/A, equation 2.8), which exploit the taxonomic, phylogenetic or genetic relatedness of the species
making up the pair of samples being compared. Thus two samples would be considered highly
similar if they contain the same species, or closely related ones, and highly dissimilar if most of the
species in one sample have no near relations in the other sample.

In fact,  Clarke & Warwick (1998a)  first defined a taxonomic mapping similarity between two
species lists, in order to examine the taxonomic relatedness of the species sets successively
‘peeled’ from the full list, in a structural redundancy analysis of influential groups of species (the M
statistic of Chapter 16, Table 16.2). This turns out to be the natural extension of Kulczynski
dissimilarity and (to be consistent with our use in Chapter 17 of u.c. Greek characters for
taxonomic relatedness measures) it is denoted here by $\Theta ^ +$.  Izsak & Price (2001)  used a
slightly different form of coefficient, which proves to be the extension of the Sørensen coefficient,
denoted here by $\Gamma ^ +$. Before defining these coefficients, however, it is desirable to
state the potential benefits of such a taxonomic dissimilarity measure:

a) samples from different biogeographic regions do not lend themselves to conventional clustering
or MDS ordination analyses using Sørensen (Bray-Curtis) or other traditional similarity coefficients.
This is because few species may be shared between samples from different parts of the world. In
extreme cases, there may be no species in common among any of the samples and all Bray-Curtis
dissimilarities will be 100, leaving no possibility for a dendrogram or ordination plot. A taxonomic
dissimilarity measure, however, takes into account not just whether the second sample has
matching species to the first sample but, if it does not, whether there are closely related species in
the second sample to all those found in the first sample (and vice-versa). Two lists with no species
in common therefore have a defined dissimilarity, measuring whether they contain distantly or
closely related species, and meaningful MDS plots ensue.

b) standard similarity measures will, inevitably, be susceptible to variation in taxonomic expertise
or (in the case of time series) revisions in taxonomic definition, across the samples being
compared. For example, suppose at some point in a time series, an increase in taxonomic expertise
results in what was previously identified as a single taxon being noted as two separate species. The
data should, of course, be subsequently rationalised to the lowest common denominator of
taxonomic identification over the full series, but if this is not done, an ordination will have a
tendency to display some artefactual signal of ‘community change’ at this point (one species has
disappeared and two new ones have appeared). A single occurrence of this sort will not have much
effect – one of the advantages of similarities based on presence/absence data is that they draw
only a little information from each species – but if taxonomic inconsistency is rampant, misleading

17.11 Taxonomic dissimilarity

https://learninghub.primer-e.com/link/224#bkmrk-clarke1998a
https://learninghub.primer-e.com/books/change-in-marine-communities/chapter/chapter-16-further-multivariate-comparisons-and-resemblance-measures
https://learninghub.primer-e.com/books/change-in-marine-communities/chapter/chapter-17-biodiversity-and-dissimilarity-measures-based-on-relatedness-of-species
https://learninghub.primer-e.com/link/224#bkmrk-izsak2001a


ordinations could result. Taxonomic dissimilarity would, however, be more robust to species being
split in this way. The later samples do not appear to have the same taxon as the earlier samples,
but they have one (or two) species which are very closely related to it (the same genus), hence
retain high contributions to similarity from that species.

c) it might be hoped that the desirable sampling properties of taxonomic distinctness indices such
as $\Delta ^ +$ and $\Lambda ^ +$, in particular their robustness to variable sampling effort
across the samples, would carry over to taxonomic dissimilarity measures.
 

Taxonomic dissimilarity definition

As in Table 16.2, the distance through the taxonomic, (or phylogenetic/genetic) hierarchy, from
every species in the first sample (A) to its nearest relation in the second sample (B), is recorded.
These are totalled, as are the distances between species in sample B and their nearest neighbours
in sample A, see the example in Fig. 17.18. These two totals are not the same, in general, and the
way they are converted to an average taxonomic distance between the two samples defines the
difference between $\Gamma ^ +$ and $\Theta ^ +$. Formally, if $\omega _ {ij}$ is the path
length between species i and j, and there are $s _ A$ and $s _ B$ species in samples A and B, then:

$$\Gamma ^ + = 100 \times \left( \sum _ {i \in A} \min _ {j \in B} ( \omega _ {ij} ) + \sum _ {j \in
B} \min _ {i \in A} ( \omega _ {ji}) \right) \big/ (s _ A + s _ B)$$ $$\Theta ^ + = 100 \times
\frac{1}{2} \left( \frac{ \sum _ {i \in A} \min _ {j \in B} ( \omega _ {ij} )}{s _A} + \frac{ \sum _ {j
\in B} \min _ {i \in A} ( \omega _ {ji})}{s _B} \right) \tag{17.8}$$
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Fig. 17.18. For presence/absences from two hypothetical samples (A with 6 species, B with four),
distances through the tree from each species in A to its nearest neighbour in B (black, continuous
join) and vice-versa (grey, dashed join).
 

In words, $\Gamma ^ +$ is the average path length to the nearest relation in the opposite sample¶

, i.e. a simple average of all the path lengths shown in Fig. 17.18. Thus:

$$\Gamma ^ + = [(0+25+50+0+50+0)+(0+0+75+0)]/(6+4) = 20.0 $$

whereas $\Theta ^ +$ is a simple mean of the separate averages in the two directions: A to B, then
B to A. Thus:

$$\Theta ^ + = [(125/6) + (75/4)]/2 = 19.8 $$

Clearly, the two measures give identical answers if the number of species is the same in the two
samples, and they cannot give very different dissimilarities unless the richness is highly
unbalanced. This is precisely as found for the relationship between the Bray-Curtis and Kulczynski
measures on P/A data; they cannot give a different ordination plot unless species numbers are very
variable. The relation of these standard coefficients to $\Gamma ^ +$ and $\Theta ^ +$ is readily
seen: imagine flattening the taxonomic hierarchy to just two levels, species and genus, with all
species in the same genus, so that different species are always 100 units apart. The branch length
between a species in sample A and its nearest neighbour in sample B is either 0 (the same species
is in sample B) or 100 (that species is not found in sample B). In that case:

$$\Gamma ^ + = (300 + 100)/(6+4) = 40.0 \equiv B ^ + $$ $$ \Theta ^ + = (300/6 + 100/4)/2 =
37.5 \equiv K ^ + \tag{17.8}$$

where $B ^ +$ and $K ^ +$ denote Bray-Curtis and Kulczynski dissimilarity for P/A data,
respectively. The truth of this identity can be seen from their general definitions (see equations 2.7
and 2.8 for the similarity forms):

$$ B ^ + = (100 b + 100 c)/[(a + b) + (a + c)] $$ $$ K ^ + = [(100 b)/(a + b) + (100 c) / (a + c)]/2
\tag{17.9} $$

where b is the number of species present in sample A but not sample B, c is the number present in
B but not A, and a is the number present in both. Clearly, 100b is the total of the (a+b) path
lengths from A to B, and 100c the total of the (a+c) path lengths from B to A.

Taxonomic dissimilarity, $\Gamma ^ +$, is therefore a natural generalisation of the Sørensen
coefficient, adding a more graded hierarchy on top of standard Bray-Curtis (instead of matching
‘hits’ and ‘misses’ there are now ‘near hits’ and ‘far misses’). In some ways, this is analogous to the
relationship shown earlier, between Simpson diversity ($\Delta ^ \circ$) and taxonomic diversity
($\Delta$), and it has two likely consequences:

1. ordinations based on $\Gamma ^ +$ will bear an evolutionary, rather than revolutionary,
relationship to those based on P/A Bray-Curtis†; when there are many direct species
matches $\Gamma ^ +$ may tend to track B$^ +$ rather closely.
 



2. $\Gamma ^ +$ will tend to carry across the sampling properties of B$^ +$; it is well-
known that Bray-Curtis (and indeed, all widely-used dissimilarity coefficients) are
susceptible to bias from variations in sampling effort. It is axiomatic in multivariate
analysis that similarities be calculated between samples which are either rigidly controlled
to represent the same degree of sampling effort, or in the case of non-quantitative
sampling, samples are large enough for richness to be near the asymptote of the species -
area curve (this is very difficult to arrange in most practical contexts!) Otherwise, it is
inevitable that samples of smaller extent will contain fewer species and thus similarities
calculated with larger samples will be lower, even when true assemblages are the same.
Theory shows that, indeed, $\Gamma ^ +$ and $\Theta ^ +$ (along with B$^ +$, K$ ^
+$, $\Phi ^ +$) are not independent of sampling effort, so the third of our hoped-for
properties for taxonomic dissimilarity – that it would carry across the nice statistical
properties of taxonomic distinctness measures $\Delta ^ +$ and $\Lambda ^ +$ – is not
borne out§.

The other two potential advantages of taxonomic dissimilarity, given above, do stand up to
practical examination. One of us (PJS), in the description of these taxonomic dissimilarity measures
in  Clarke, Somerfield & Chapman (2006) , gives the following two examples.

¶ $\Gamma ^ +$ is the taxonomic distance, ‘TD’, of  Izsak & Price (2001)  (not to be confused with
the AvTD and TTD of this chapter, which are diversity indices not dissimilarities!), except that the
longest path length in their taxonomic trees is not scaled to a fixed number, such as 100 or 1, so
they rescale it in similarity form, denoted $\Delta _s$.

† It is tempting to define, by analogy with equations (17.1) to (17.3), a further coefficient, the ratio
$\Phi ^ + = \Gamma ^ + / B ^ +$, which reflects more purely the relatedness dissimilarity,
removing the Bray-Curtis component in $\Gamma ^ +$, coming from direct species matches. In
fact, $\Phi ^ +$ is simply the average of the minimum distance from each species to its nearest
relation in the other sample, calculated only for the ‘b+c’ species which do not have a direct
match. It is thus independent of ‘a’ (number of matches) as well as ‘d’ of course (number of joint
absences). Limited practical experience, however, suggests that $\Phi ^ +$ tends to ‘throw the
baby out with the bathwater’ and leads to uninterpretably ‘noisy’ ordination plots.

§ Note, however, that  Izsak & Price (2001)  provide some limited simulation evidence for $\Gamma
^ +$ being less biased by uneven sampling effort than one of the other standard P/A indices,
Jaccard, equation (2.6). This suggests that the comparison with Sørensen – the more natural
comparator, given the above discussion – would also indicate some advantage for the taxonomic
dissimilarity measure (Jaccard and Sørensen are quite closely linked, in fact monotonically related,
so they produce identical non-metric MDS plots for example).
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