2.2 Example: Loch Linnhe macrofauna

A trivial example, used in this and the following chapter to illustrate simple manual computation of
similarities and hierarchical clusters, is provided by extracting six species and four years from the
Loch Linnhe macrofauna data {L} of Pearson (1975), seen already in Fig. 1.3 and Table 1.4. (Of

course, arbitrary extraction of ‘interesting’ species and years is not a legitimate procedure in a real
application; it is done here simply as a means of showing the computational steps.)

Table 2.1. Loch Linnhe macrofauna {L} subset. (a) Abundance (untransformed) for some selected
species and years. (b) The resulting Bray-Curtis similarities between every pair of samples.

(a) Year: 64 68 71 73 (b)
(Sample: 1 2 3 4) Sample 1 2 3 4

Species 1 -

Echinoca. 9 0o 0 0 2 8 -
Myrioche. 19 0o 0 3 3 0 42 -
Labidopl. 9 37 0 I0 4 39 21 4 -
Amaeana 0 12 144 9

Capitella 0 128 344 2

Mytilus 0o 0 0 0

Table 2.1a shows the data matrix of counts and Table 2.1b the resulting lower triangular matrix of
Bray-Curtis similarity coefficients. For example, using the first form of equation (2.1), the similarity
between samples 1 and 4 (years 1964 and 1973) is:

$$S {14} = 100 \left[ 1 - \frac{9+16+1+9+2+0}{9+22+19+9+2+0} \right] = 39.3 $$%
The second form of equation (2.1) can be seen to give the same result:
$$S_{14} = 100 \left[\frac{2[0+3+9+0+0+01}{9+22+19+9+2+0} \right] = 39.3 $$

Computation is therefore simple and it is easy to verify that the coefficient possesses the following
desirable properties.

a) S = 0 if the two samples have no species in common, since min ($y_{ij}$, $y_{ik}$) = 0 for all i
(e.g. samples 1 and 3 of Table 2.1a). Of course, S = 100 if two samples are identical, since |$y_{ij}
-y _{ik}$| = 0 for all i.

b) A scale change in the measurements does not change S. For example, biomass could be
expressed in g rather than mg or abundance changed from numbers per cm$72$ of sediment
surface to numbers per m$™2$; all y values are simply multiplied by the same constant and this
cancels in the numerator and denominator terms of equation (2.1).


https://learninghub.primer-e.com/link/224#bkmrk-pearson1975a
https://learninghub.primer-e.com/uploads/images/gallery/2023-02/screenshot-table2-1.png

¢) ‘Joint absences’ also have no effect on S. In Table 2.1a the last species is absent in all samples;
omitting this species clearly makes no difference to the two summations in equation (2.1). That
similarity should depend on species which are present in one or other (or both) samples, and not

on species which are absent from both, is usually a desirable property. As Field, Clarke & Warwick

(1982) put it: "taking account of joint absences has the effect of saying that estuarine and abyssal
samples are similar because both lack outer-shelf species”. Note that a lack of dependence on joint
absences is by no means a property shared by all similarity coefficients.

Transformation of raw data

In one or two ways, the similarities of Table 2.1b are not a good reflection of the overall match
between the samples, taking all species into account. To start with, the similarities all appear too
low; samples 2 and 3 would seem to deserve a similarity rating higher than 50%. As will be seen
later, this is not an important consideration since most of the multivariate methods in this manual
depend only on the relative order (ranking) of the similarities in the triangular matrix, rather than
their absolute values. More importantly, the similarities of Table 2.1b are unduly dominated by
counts for the two most abundant species (4 and 5), as can be seen from studying the form of
equation (2.1): terms involving species 4 and 5 will dominate the sums in both numerator and
denominator. Yet the larger abundances in the original data matrix will often be extremely variable

in replicate samples (the issue of variance structures in community data is returned to in Chapter 9

) and it is usually undesirable to base an assessment of similarity of two communities only on the
counts for a handful of very abundant species.

The answer is to transform the original y values (the counts, biomass, % cover or whatever) before
computing the Bray-Curtis similarities. Two useful transformations are the root transform,
$\sqrt{}$y, and the double root (or 4th root) transform, $\sqrt{}\sqrt{}$y. There is more on the

effects of transformation later, in Chapter 9; for now it is only necessary to note that the root
transform, $\sqrt{}$y, has the effect of down-weighting the importance of the highly abundant
species, so that similarities depend not only on their values but also those of less common (‘mid-
range’) species. The 4th root transform, $\sqrt{}\sqrt{} $y, takes this process further, with a more
severe down-weighting of the abundant species, allowing not only the mid-range but also the rarer
species to exert some influence on the calculation of similarity. An alternative severe
transformation, with very similar effect to the 4th root, is the log transform, log(1+y).

The result of the 4th root transform for the previous example is shown in Table 2.2a, and the Bray-
Curtis similarities computed from these transformed abundances, using equation (2.1), are given in
Table 2.2b.* There is a general increase in similarity levels but, of more importance, the rank order
of similarities is no longer the same as in Table 2.1b (e.g. $S _ {24} >S _{14}$and $S_{34} >S
_{12}$ now), showing that transformations can have a significant effect on the final multivariate
display.

Table 2.2. Loch Linnhe macrofauna {L} subset. (a) $\sqrt{}\sqrt{} $-transformed abundance for
the four years and six species of Table 2.1. (b) Resulting Bray-Curtis similarity matrix.
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(a) Year: 64 68 71 73 (b)

(Sample: 1 2 3 4) Sample 1 2 3 4
Species 1 -

Echinoca. 1.7 0 0 0 2 26 -
Myrioche. 2.1 0 0 1.3 3 0 68 -
Labidopl. 1.7 25 0 18 4 52 08 42 -—

Amaeana 0 1.9 35 1.7
Capitella 0 3.4 4.3 1.2
Mytilus 0 0 0 0

In fact, choice of transformation can be more important than level of taxonomic identification (see

Chapter 16) especially when abundances are extreme, such as for highly-clumped or schooling
species, when dispersion weighting, in place of (or prior to) transformation can be an effective

strategy, see Chapter 9.

Canberra coefficient

An alternative which also reduces variability and may sometimes eliminate the need for
transformation$ is to select a similarity measure that automatically balances the weighting given to

each species when computed on original counts. One such possibility, the Stephenson, Williams &

Cook (1972) form of the so-called Canberra coefficient of Lance & Williams (1967) , defines the
similarity between samples j and k as:

$$S_{jk} = 100 \left[ 1 - \frac{1}{p} \sum_{i=1}"~{p} \frac{| y_{ij} - y_{ik} | }{(y_{ij} + y_{ik})
} \right] \tag{2.2}$$

This is another member of the ‘Bray-Curtis family’, bearing a strong likeness to (2.1), but the
absolute differences in counts for each species are separately scaled, i.e. the denominator scaling
term is inside not outside the summation over species. For example, from Table 2.1a, the Canberra
similarity between samples 1 and 4 is:

$$S {14} =100 \left[ 1 -\frac{1}{5} \left( \frac{9}{9} + \frac{16}{22} + \frac{1}{19}
+\frac{9} {9} +\frac{2} {2} \right) \right] = 24.4 $$

Note that joint absences have no effect here because they are deliberately excluded (since 0/0 is
undefined) and p is reset to be the number of species that are present in at least one of the two
samples under consideration, an important step for a number of biological measures.

The separate scaling constrains each species to make equal contribution (potentially) to the
similarity between two samples. However abundant a species is, its contribution to S can never be
more than 100/p, and a rare species with a single individual in each of the two samples contributes
the same as a common species with 1000 individuals in each. Whilst there may be circumstances
in which this is desirable, more often it leads to overdomination of the pattern by a large number of
rare species, of no real significance. (Often the sampling strategy is incapable of adequately
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quantifying the rarer species, so that they are distributed arbitrarily, to some degree, across the
samples.)

Correlation coefficient

A common statistical means of assessing the relationship between two columns of data (samples j
and k here) is the standard product moment, or Pearson, correlation coefficient:

$$r_{jk} = \frac{\sum_i (y_{ij} - \overline{y} _ {\bullet j})('y_{ik} - \overline{y} _ {\bullet k}) }
{\sqrt{ \sum_i (y_{ij} - \overline{y} _{\bulletj})~2\sum_i (y {ik} - \overline{y} _{\bullet
k})~2}} \tag{2.3}$$

where $ \overline{y} _{\bullet j}$ is defined as the mean value over all species for the jth sample.
In this form it is not a similarity coefficient, since it takes values in the range (-1, 1), not (0, 100),
with positive correlation (r near +1) if high counts in one sample match high counts in the other,
and negative correlation (r < 0) if high counts match absences. There are a number of ways of
converting r to a similarity coefficient, the most obvious for community data being S = 50(1+r).

Whilst correlation is sometimes used as a similarity coefficient, it is not particularly suitable for
much biological community data, with its plethora of zero values. For example, it violates the
criterion that S should not depend on joint absences; here two columns are more highly positively
correlated (and give S nearer 100) if species are added which have zero counts for both samples. If
correlation js to be used a measure of similarity, it makes good sense to transform the data
initially, exactly as for the Bray-Curtis computation, so that large counts or biomass do not totally
dominate the coefficient.

General suitability of Bray-Curtis

The ‘Bray-Curtis family’ is defined by Clarke, Somerfield & Chapman (2006) as any similarity
which satisfies all of the following desirable, ecologically-oriented guidelines

a) takes the value 100 when two samples are identical (applies to most coefficients);

b) takes the value 0 when two samples have no species in common (this is a much tougher
condition and most coefficients do not obey it);

C) a change of measurement unit does not affect its value (most coefficients obey this one);

d) value is unchanged by inclusion or exclusion of a species which is jointly absent from the two
samples (another difficult condition to satisfy, and many coefficients do not obey this one);

e) inclusion (or exclusion) of a third sample, C, in the data array makes no difference to the
similarity between samples A and B (several coefficients do not obey this, because they depend on
some form of standardisation carried out for each species, by the species total or maximum across
all samples);

f) has the flexibility to register differences in total abundance for two samples as a less-than-
perfect similarity when the relative abundances for all species are identical (some coefficients
standardise automatically by sample totals, so cannot reflect this component of
similarity/difference).
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In addition, Faith, Minchin & Belbin (1987) use a simulation study to look at the robustness of
various similarity coefficients in reconstructing a (non-linear) ecological response gradient. They
find that Bray-Curtis and a very closely-related modification (also in the Bray-Curtis family), the
Kulczynski coefficient

$$S_{jk} = 100 \frac{\sum _ {i=1} ~ p\min (y_{ij}, y_{ik}) } {2 /\left[ \left(\sum _ {i=1} ~ p
y_{ij} \right) ~ {-1} +\left(\sum _ {i=1} ~ p y_{ij} \right) ~ {-1} \right] } \tag{2.4}$$

Kulczynski (1928) , perform most satisfactorilyT.

Coefficients other than Bray-Curtis, which satisfy all of the above conditions, tend either to have
counterbalancing drawbacks, such as the Canberra measure’s forced equal weighting of rare and
common species, or to be so closely related to Bray-Curtis as to make little practical difference to
most analyses, such as the Kulczynski coefficient, which clearly reverts to Bray-Curtis exactly for
standardised samples (when sample totals are all 100).

¥ After a range of Pre-treatment options (including transformation) Bray-Curtis is the default
coefficient in the PRIMER Resemblance routine, on data defined as type Abundance (or Biomass),
but PRIMER also offers nearly 50 other resemblance measures.

§ This removes all differences across species in terms of absolute mean abundance but does not
address erratic differences within species resulting from schooled or clumped arrivals over the
samples. The converse is true of dispersion weighting.

' They are not, of course, universally accepted as desirable! In non-ecological contexts there may
be no concept of zero as a ‘special’ number, which must be preserved under transformation
because it indicates absence of a species (and ecological work is often concerned as much with the
balance of species that are present or absent, as it is with the numbers of individuals found). Even
in ecological contexts, some authors prefer not to use a coefficient which has a finite limit (100% =
perfect dissimilarity), in part because of technical difficulties this may cause for parametric or semi-
parametric modelling when there are many samples with no species in common. These technical
issues do not arise for the flexible rank-based methods advocated here (such as non-metric multi-
dimensional scaling ordination).

T This is simply the second form of the Bray-Curtis definition in (2.1), with the denominator terms of
the arithmetic mean of the two sample totals across species, $(f+g)/2$, being replaced with a
harmonic mean, $2/ ( f~{-1} + g~ {-1} )$. In the current authors’ experience, this behaves slightly
less well than Bray-Curtis because of the way a harmonic mean is strongly dragged towards the

smallest of the totals f and g. Clarke, Somerfield & Chapman (2006) define an intermediate option
(also therefore in the Bray-Curtis family) which has a geometric mean divisor $(fg) ©~ {0.5}$. This

is termed quantitative Ochiai because it reduces to a well-known measure ( Ochiai (1957) ) when
the data are only of presences or absences. The serious point here is that it is sufficiently easy to
produce new, sensible similarity coefficients that some means of summarising their ‘similarity’ to
each other, in terms of their effects on a multivariate analysis, is essential. This is deferred until the

2nd stage plots of Chapter 16.
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