3.2 Hierarchical agglomerative
clustering

The most commonly used clustering techniques are the hierarchical agglomerative methods. These
usually take a similarity matrix as their starting point and successively fuse the samples into
groups and the groups into larger clusters, starting with the highest mutual similarities then
lowering the similarity level at which groups are formed, ending when all samples are in a single
cluster. Hierarchical divisive methods perform the opposite sequence, starting with a single cluster
and splitting it to form successively smaller groups.

The result of a hierarchical clustering is represented by a tree diagram or dendrogram, with the x
axis representing the full set of samples and the y axis defining a similarity level at which two
samples or groups are considered to have fused. There is no firm convention for which way up the
dendrogram should be portrayed (increasing or decreasing y axis values) or even whether the tree
can be placed on its side; all three possibilities can be found in this manual.

Fig. 3.1 shows a dendrogram for the similarity matrix from the Frierfjord macrofauna, a subset of
which is in Table 3.1. It can be seen that all four replicates from sites A, D, E and G fuse with each
other to form distinct site groups before they amalgamate with samples from any other site; that,
conversely, site B and C replicates are not distinguished, and that A, E and G do not link to B, C and
D until quite low levels of between-group similarities are reached.
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Fig. 3.1. Frierfjord macrofauna counts {F}. Dendrogram for hierarchical clustering (using group-
average linking) of four replicate samples from each of sites A-E, G, based on the Bray- Curtis
similarity matrix shown (in part) in Table 3.1.

The mechanism by which Fig. 3.1 is extracted from the similarity matrix, including the various
options for defining what is meant by the similarity of two groups of samples, is best described for
a simpler example.

Construction of dendrogram

Table 3.2 shows the steps in the successive fusing of samples, for the subset of Loch Linnhe
macrofaunal abundances used as an example in the previous chapter. The data matrix has been
$\sgrt{}\sqrt{}$-transformed, and the first triangular array is the Bray-Curtis similarity of Table
2.2.

Samples 2 and 4 are seen to have the highest similarity (underlined) so they are combined, at
similarity level 68.1%. (Above this level there are considered to be four clusters, simply the four
separate samples.) A new similarity matrix is then computed, now containing three clusters: 1, 2&4
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and 3. The similarity between cluster 1 and cluster 3 is unchanged at 0.0 of course but what is an
appropriate definition of similarity S(1, 2&4) between clusters 1 and 2&4, for example? This will be
some function of the similarities 5(1,2), between samples 1 and 2, and 5(1,4), between 1 and 4;
there are three main possibilities here.

a) Single linkage. S(1, 2&4) is the maximum of S(1, 2) and S(1, 4), i.e. 52.2%.

b) Complete linkage. S(1, 2&4) is the minimum of S(1, 2) and S(1, 4), i.e. 25.6%.
c) Group-average link. S(1, 2&4) is the average of S(1, 2) and S(1, 4), i.e. 38.9%.
Table 3.2 adopts group-average linking, hence

$$ S(2\& 4, 3) = \left[ S(2, 3) + S(4, 3) \right]/2 = 55.0 $$

The new matrix is again examined for the highest similarity, defining the next fusing; here this is
between 2&4 and 3, at similarity level 55.0%. The matrix is again reformed for the two new
clusters 1 and 2&3&4 and there is only a single similarity, S(1, 2&3&4), to define. For group-
average linking, this is the mean of S(1, 2&4) and S(1, 3) but it must be a weighted mean, allowing
for the fact that there are twice as many samples in cluster 2&4 as in cluster 3. Here:

$$ S(1, 2\& 3\& 4) = \left[ 2 \times S (1, 2 \& 4) + 1 \times S(1, 3) \right]/3 = \left[ 2 \times 38.9 +
1 \times 0 \right]/3 = 25.9 $$

Table 3.2. Loch Linnhe macrofauna {L} subset. Abundance array after $\sqrt{}\sqrt{}$-
transformation, the resulting Bray-Curtis similarity matrix and the successively fused similarity
matrices from a hierarchical clustering, using group average linking.

Year: 64 68 71 73

Sample: 1 2 3 4 Sample 1 2 3 4 Sample 1 2&4 3 Sample 1 2&3&4
Species 1 - 1 - 1 -
Echinoca,. 1.7 0 0 0 — 2 256 - — 2&4 389 - — 2&3&4 25.9 -
Myrioche. 2.1 0 0 13 3 00 679 — 3 0.0 3550 -

Labidopl. 1.7 25 0 1.8 4 522 681 420 -

dmgeang 0 1.9 35 17

Capitella 0 34 43 1.2
Mytilus 0 0 0o 0

Though it is computationally efficient to form each successive similarity matrix by taking weighted
averages of the similarities in the previous matrix (known as combinatorial computation), an
alternative which is entirely equivalent, and perhaps conceptually simpler, is to define the
similarity between the two groups as the simple (unweighted) average of all between-group
similarities in the initial triangular matrix (hence the terminology Unweighted Pair Group Method
with Arithmetic mean, UPGMAY). So:

$$ S(1, 2 \& 3\& 4) = \left[S(1, 2) + S(1, 3) + S(1, 4)\right]l/3 = (25.6 + 0.0 + 52.2)/3 = 25.9,%$%
the same answer as above.

The final merge of all samples into a single group therefore takes place at similarity level 25.9%,
and the clustering process for the group-average linking shown in Table 3.2 can be displayed in the
following dendrogram.
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Dendrogram features

This example raises a number of more general points about the use and appearance of
dendrograms.

1. Samples need to be re-ordered along the x axis, for clear presentation of the dendrogram;
it is always possible to arrange samples in such an order that none of the dendrogram
branches cross each other.

2. The resulting order of samples on the x axis is not unique. A simple analogy would be with
an artist’s ‘mobile’; the vertical lines are strings and the horizontal lines rigid bars. When
the structure is suspended by the top string, the bars can rotate freely, generating many
possible re-arrangements of samples on the x axis. For example, in the above figure,
samples 2 and 4 could switch places (new sequence 4, 2, 3, 1) or sample 1 move to the
opposite side of the diagram (new sequence 1, 2, 4, 3), but a sequence such as 1, 2, 3, 4
is not possible. It follows that to use the x axis sequence as an ordering of samples is
misleading.

3. Cluster analysis attempts to group samples into discrete clusters, not display their inter-
relations on a continuous scale; the latter is the province of ordination and this would be
preferable for the simple example above. Clustering imposes a rather arbitrary grouping
on what appears to be a continuum of change from an unpolluted year (1964), through
steadily increasing impact (loss of some species, increase in abundance of opportunists
such as Capitella), to the start of a reversion to an improved condition in 1973. Of course
it is unwise and unnecessary to attempt serious interpretation of such a small subset of

data but, even so, the equivalent MDS ordination for this subset (met in Chapter 5)
contrasts well with the relatively unhelpful information in the above dendrogram.

4. The hierarchical nature of this clustering procedure dictates that, once a sample is
grouped with others, it will never be separated from them in a later stage of the process.
Thus, early borderline decisions which may be somewhat arbitrary are perpetuated
through the analysis and may sometimes have a significant effect on the shape of the
final dendrogram. For example, similarities S(2, 3) and S(2, 4) above are very nearly
equal. Had S(2, 3) been just greater than S(2, 4), rather than the other way round, the
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final picture would have been a little different. In fact, the reader can verify that had S(1,
4) been around 56% (say), the same marginal shift in the values of S(2, 4) and S(2, 3)
would have had radical consequences, the final dendrogram now grouping 2 with 3 and 1
with 4 before these two groups come together in a single cluster. From being the first to
be joined, samples 2 and 4 now only link up at the final step. Such situations are certain to
arise if, as here, one is trying to force what is essentially a steadily changing pattern into
discrete clusters.

Dissimilarities

Exactly the converse operations are needed when clustering from a dissimilarity rather than a
similarity matrix. The two samples or groups with the lowest dissimilarity at each stage are fused.
The single linkage definition of dissimilarity of two groups is the minimum dissimilarity over all
pairs of samples between groups; complete linkage selects the maximum dissimilarity and group-
average linking involves just an unweighted mean dissimilarity.

Linkage options

The differing consequences of the three linkage options presented earlier’ are most easily seen for

the special case used in Chapter 2, where there are only two species (rows) in the original data
matrix. Samples are then points in the species space, with the (x,y) axes representing abundances
of (Sp.1, Sp.2) respectively. Consider also the case where dissimilarity between two samples is
defined simply as their (Euclidean) distance apart in this plot.
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In the above diagram, the single link dissimilarity between Groups 1 and 2 is then simply the
minimum distance apart of the two groups, giving rise to an alternative name for the single
linkage, namely nearest neighbour clustering. Complete linkage dissimilarity is clearly the
maximum distance apart of any two samples in the different groups, namely furthest neighbour
clustering. Group-average dissimilarity is the mean distance apart of the two groups, averaging
over all between-group pairs.

Single and complete linkage have some attractive theoretical properties. For example, they are
effectively non-metric. Suppose that the Bray-Curtis (say) similarities in the original triangular
matrix are replaced by their ranks, i.e. the highest similarity is given the value 1, the next highest
2, down to the lowest similarity with rank n(n-1)/2 for n samples. Then a single (or complete) link
clustering of the ranked matrix will have the exactly the same structure as that based on the
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original similarities (though the y axis similarity scale in the dendrogram will be transformed in
some non-linear way). This is a desirable feature since the precise similarity values will not often
have any direct significance; what matters is their relationship to each other and any non-linear
(monotonic) rescaling of the similarities would ideally not affect the analysis. This is also the stance
taken for the preferred ordination technique in this manual’s strategy, the method of non-metric

multi-dimensional scaling (MDS, see Chapter 5).

However, in practice, single link clustering has a tendency to produce chains of linked samples,
with each successive stage just adding another single sample onto a large group. Complete linkage
will tend to have the opposite effect, with an emphasis on small clusters at the early stages. (These
characteristics can be reproduced by experimenting with the special case above, generating
nearest and furthest neighbours in a 2-dimensional species space). Group-averaging, on the other
hand, is often found empirically to strike a balance in which a moderate number of medium-sized
clusters are produced, and only grouped together at a later stage.

' The terminology is inevitably a little confusing therefore! UPGMA is an unweighted mean of the
original (dis)similarities among samples but this gives a weighted average among group
dissimilarities from the previous merges. Conversely, WPGMA (also known as McQuitty linkage) is
defined as an unweighted average of group dissimilarities, leading to a weighted average of the
original sample dissimilarities (hence WPGMA).

T PRIMER v7 offers single, complete and group average linking, but also the flexible beta method of

Lance & Williams (1967) , in which the dissimilarity of a group (C) to two merged groups (A and B)
is defined as $\delta _{C,AB} = (1 - \beta)[(\delta {CA} + \delta _ {CB} ) /2] + \beta \delta _
{AB} $. If $\beta = 0$ this is WPGMA, $( \delta _ {CA} + \delta _ {CB} )/ 2%, the unweighted
average of the two group dissimilarities. Only negative values of $\beta$, in the range (-1, 0), make
much sense in theory; Lance and Williams suggest $ \beta = -0.25 $ (for which the flexible beta
has affinities with Gower’s median method) but PRIMER computes a range of $ \beta$ values and
chooses that which maximises the cophenetic correlation. The latter is a Pearson matrix correlation
between original dissimilarity and the (vertical) distance through a dendrogram between the
corresponding pair of samples; a dendrogram is a good representation of the dissimilarity matrix if
cophenetic correlation is close to 1. Matrix correlation is a concept used in many later chapters,

first defined on page 6.10, though there (and usually) with a Spearman rank correlation; however
the Pearson matrix correlation is available in PRIMER 7°’s RELATE routine, and can be carried out on
the cophenetic distance matrix available from CLUSTER. (It is also listed in the results window from
a CLUSTER run). In practice, judged on the cophenetic criterion, an optimum flexible beta solution
is usually inferior to group average linkage (perhaps as a result of its failure to weight $\delta _
{CA}$ and $\delta _ {CB}$ appropriately when averaging ‘noisy’ data).
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