5.8 Further nMDS/mMDS
developments

Higher dimensional solutions

MDS solutions can be sought in higher dimensions and we noted previously that the stress will
naturally decrease as the dimension increases. Fig 5.9a shows the scree plot of this decreasing
stress (y axis) against the increasing number of dimensions, for the Amoco-Cadiz oil spill data of
Fig. 5.8. There is a suggestion of a ‘shoulder’ in this line plot as the stress drops from 2-d to 3-d,
thereafter declining steadily. The 2-d stress is already a rather satisfactory 0.09 but drops quite
strongly to about 0.05 with the extra dimension, now in our category of an excellent
representation, and so should certainly be further examined. Figs. 5.9c and d show the 2- and 3-d
Shepard plots, and it is clear that the stress (scatter about the fitted monotonic regression line) has
reduced quite sharply. Fig. 5.9b shows the 3-d nMDS itself, with the box rotated to highlight, in the
vertical direction (z), the third MDS axis (as defined by the automatic rotation of the configuration
to principal axes). The seasonal cycle is clearly expressed by changes along this axis, which is
orthogonal to the main inter-annual changes seen in the x, y plane (the latter is very likely to be
the effect of the oil spill and partial recovery, though it is impossible of course to infer that with full
confidence, given the absence of any sort of reference conditions for the natural inter-annual
variation). This example suggests that, even in cases with acceptable 2-d stress, at least the 3-d
solution should be calculated and then rotated to see if it offers further insight’. Here, for example,
the apparent synchrony in direction of the seasonal cycle between the start (A-E) and end (R-U)
years of this time course, seen in the 2-d plot (Fig. 5.8a), is confirmed in the 3-d plot (Fig. 5.9b)
with its more complete separation of season and year. The 3-d plot gives us greater confidence in
this case that the 2-d plot (with its perfectly acceptable stress level) in no way misleads. Of course,
for static displays, one would then always prefer the 2-d plot, as a suitable approximation to the
high-dimensional structure.
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Fig. 5.9. Amoco-Cadiz oil spill {A}. a) Scree plot of stress for nMDS solutions in 2-d to 10-d (data
matrix as in Fig. 5.8); b) 3-d nMDS plot for the 21 times; ¢) & d) Shepard plots for the 2-d (Fig 5.8)
and 3-d MDS ordinations showing the decreasing scatter about the monotonic regression (stress).

(Non-)linearity of the Shepard diagram

Shepard diagrams for the 2-d and 3-d non-metric MDS ordinations for Morlaix were seen in Figs.
5.9c and 5.9d; note how relatively restricted the range of (dis)similarities is, by comparison with
the equivalent plot (Fig. 5.2) for the (spatial) Exe nematode study. The latter exemplifies a long
baseline of community change: there are pairs of sites with no species in common, thus
dissimilarities at the extreme of their range (100). For the (temporal) Morlaix study, the baseline of
change is relatively much shorter, nearly all dissimilarities being between 20 and 50: there is no
complete turnover of species composition through time, nor anything approaching it. This
difference results in a (commonly observed) effect of greater linearity of the relationship between
original dissimilarity and final distance in the MDS plots, as seen in Figs. 5.9c&d. It is linear
regression of the Shepard plot distances vs. dissimilarities, through the origin, which is the basis of
a less-commonly used technique for MDS, metric multidimensional scaling (mMDS), in which
dissimilarities are treated as if they are, in reality, distances. Through the origin is an important
caveat here and it is clear that Figs. 5.9c&d would not be well-fitted by such a regression - the
natural line through these points passes through distance y = 0 at about a dissimilarity of x = 20.
Thus the flexible nMDS fits instead more of a threshold relationship, in which the linearity tails off
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smoothly in a compressed set of distances for the smallest dissimilarities.

Metric multi-dimensional scaling (mMDS)

The above example will be returned to later, but there are situations in which a simple linear
regression on the Shepard plot is certainly appropriate, e.g. when the resemblance coefficient is
Euclidean distance, as would be the case for analysis of (normalised) environmental variables.
Then mMDS becomes a viable alternative to PCA (which also uses distances that are Euclidean) but
with the great advantage of ordination which does not resort to a projection of the higher-
dimensional data but sets out to preserve the high-d distances in the low-d plot, as closely as it
can. This lack of distance preservation was one of the two main objections to PCA discussed at the

end of Chapter 4.

The metric MDS algorithm is in principle that earlier described for nMDS, replacing the step
involving monotonic regression with simple linear regression through the origin. This allows the
distances on the mMDS plot to be scaled in the same units as the input resemblance matrix
(usually a distance measure), and there are now therefore measurement scales on the axes of the
plot. Orientation and reflection are again arbitrary (though usually the convention is adopted as for
nMDS, of rotating co-ordinates to principal axes).

Table. 5.2. World map {W}. a) Distance (in miles) between pairs of ‘European’ cities; b) rank
distances (1= closest, 21 = furthest)

(a) London Madrid Moscow Oslo Paris Rome
London

Madrid 774

Moscow 1565 2126

Oslo 723 1474 1012

Paris 215 641 1542 822

Rome 908 844 1491 1253 689

Vienna 791 1122 1033 848 648 477
(b) London Madrid Moscow Oslo Paris Rome
London

Madrid 7

Moscow 20 21

Oslo 6 17 13

Paris 1 3 19 9

Rome 12 10 18 16 5

Vienna 8 15 14 11 4 2
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A simple example illustrates metric MDS well, that of recreating a map of cities from a triangular
matrix of the road/rail/air distances (or perhaps travel times) between every pair of them, {W} 1.
Table 5.2a gives the great-circle distances between only 7 cities (called European for brevity
though they include Moscow). The negligible curvature of the earth over the range of about 2000
miles makes it clear that this distance matrix should be enough to locate these cities on a 2-
dimensional map near-perfectly, and Fig. 5.10a shows the result of the metric MDS. As can be seen
from Fig. 5.10c, the Shepard diagram is now precisely a linear fit through the origin, with no scatter
and thus zero stress (stress is defined exactly as for nMDS, equation 5.1). The mMDS has been
manually rotated to align with the conventional N-S direction for such a map, though that is clearly
arbitrary; the axis scales are in miles since the fully metric information is used.
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Fig. 5.10. World map {W}. For the distance matrix Table 5.2a & b from 7 ‘European’ cities: a&c)
metric MDS and its associated Shepard plot; b&d) non-metric MDS and Shepard plot (stress = 0 in
all cases)

Perhaps more striking is the equivalent nMDS, Fig. 5.10b, which is more or less identical. Though
the Shepard diagram, Fig. 5.10d, is given in terms of distance in the ordination against the input
resemblances (city distances), the monotonic regression fit ensures that all that matters to the
stress (see equation 5.1) are the y axis values of ordination distances, and their departure from the
fitted step function (also zero throughout). Points on the x axis could be stretched and squeezed
differentially along its length, and the step function would stretch and squeeze with them, thus
leaving the stress unchanged (zero, here). In other words, the only information used by the nMDS
is the rank orders of city distances in Table 5.2b. And that is actually quite remarkable: a near-
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perfect map has been obtained solely from all possible statements of the form ‘Oslo is closer to
Paris than Madrid is to Rome’. The general suitability of nMDS comes from the fact that it can
accommodate not just very non-linear Shepard diagrams but, also, where a straight line is the best
relationship (and there are more than a minimal number of relationships to work with) nMDS
should find it: the points in Fig. 5.10d do effectively fall on a straight line through the origin. What
the monotonic regression loses is the link to the original measurements: the y axis scale is in
arbitrary standard deviation units, and nMDS plots have no axis scales that can be related to the
original distances.

This example becomes more interesting still when we expand the data to 34 cities from all around
the globe, again utilising the great-circle (‘direct flight’) inter-city distances from the same atlas
source. Fig. 5.11a shows the nMDS solution in 3-d, and it is again near-perfect, with zero stress.
There is one subtlety here that should not be missed: the supplied great-circle distances are not
the same as the direct (‘through the earth’) distances between cities, represented in the nMDS
plot, and the relationship between the two is not linear. This is clear from the Shepard diagram, Fig.
5.11d: nMDS is able to preserve the rank orders of great-circle distances perfectly in the final 3-d
direct distances only if it can non-linearly transform the supplied distance scale, i.e. ‘squash up’ the
larger distances, where the earth’s curvature matters more than for the smaller distances within a
region. It has not been told how to do this, it does not use any form of parametric relationship to do
it - it simply uses the flexibility of fitting an increasing step function to mould itself to a shape that
will ‘square this particular circle’, and thus reduce the stress (to zero, here). In comparison, mMDS
will also make a reasonable job of this ordination (the final plot is not very different than Fig 5.11a)
but, because it must fit a straight line to the Shepard plot, the stress is not zero but 0.07.
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Fig. 5.11. World map {W}. a&d) 3-d non-metric MDS from great-circle distances between every pair
of 34 world cities, and associated Shepard plot of (‘through the earth’) distances in the 3-d plot, vy,
against original great-circle distances, x (stress = 0); and for the same data: b&e) 2-d metric MDS
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and Shepard plot (stress = 0.15); c&f) 2-d PCO and Shepard plot (stress undefined for this
technique, since not based on a modelled distance vs. resemblance relation, but the scatter is
clearly greater for plot f than plot e).

In addition to turning ‘distance’ matrices into ‘maps’, the other crucial role for ordination methods
is, of course, dimensionality-reduction. This can be well illustrated by seeking a 2-d MDS of the
great-circle distances. Figs. 5.11b&e show the mMDS plot and associated Shepard diagram. The

stress is, naturally, higher, at about 0.15. (The nMDS ‘map’, given by Clarke (1993), looks very
similar because the Shepard plot is close to linearity in this case, and has a slightly lower stress of
0.14). We previously categorised such stress values as ‘potentially useful but with detail not always
accurate’, and this is an apt description of the 2-d approximation in plot b) to the true 3-d map of
a). The placement within most regions (denoted by different symbols on the map) is accurate, as
can be seen from the tight scatter in the Shepard plot for smaller distances, but the MDS has
trouble placing cities like San Francisco - it cannot be put on the extreme left of the plot since that
implies that the largest distances in the original matrix are from there to the far-eastern cities of
Beijing, Tokyo, Sydney etc, which is clearly untrue. So the n/mMDS drags San Francisco towards
those cities whilst keeping it away from eastern USA and Europe, which can only ever partly
succeed - it is no surprise to observe therefore that the worst outliers on the Shepard plot involve
San Francisco.

Nonetheless, the mMDS does give a reasonably fair 2-d map of the world and the advantage it can
have over its natural competitor, Principal Co-ordinates (PCO) is well illustrated in the PCO
ordination, Fig. 5.11c. PCO does its dimensionality reduction here by projecting from the 3-d space
to the ‘best’ 2-d plane (‘squashing the earth flat’, in effect). San Francisco is now uncomfortably
close to Lagos and the generally poor distance preservation is evident from a Shepard plot, Fig.
5.11f3, for which the most extreme outliers are, not surprisingly, between San Francisco and the
African cities. In defence of PCO, it does not set out to preserve distances. Its strengths lie
elsewhere, in attempting to partition meaningful structure, seen on the primary axes, from
meaningless residual variability, which it assumes will appear on the higher axes and thus be
‘flattened’ by the projection. However, this example is a salutary one if the main motivation is to
display all of the high-dimensional structure of a resemblance matrix in the best possible way in
low-dimensional space.

mMDS for Amoco-Cadiz oil-spill data

Fig. 5.12a shows the result of metric MDS for the Morlaix macrofauna data of Figs. 5.8 and 5.9.
Whilst the metric ordination plot shares the same features as its non-metric counterpart, the stress
value is much higher (at 0.23). Fig. 5.12c shows why: the linear regression through the origin, the
basis of mMDS, is a very poor fit. In spite of the way mMDS is seeking to force the Bray-Curtis
dissimilarities to be interpreted exactly as distances, the data resolutely refuses to go along with
this! It maintains its own linear relationship (not through the origin) as the solution which best
minimises the overall stress; this explains the retention of a similar-looking ordination in spite of
the high stress. But the conflict between the fitted model and the data carries a price: it does not
result in an adequate 2-d representation. For example, it suggests that the apparent ‘recovery’
towards the pre-spill year is better than is justified by the similarities. Also the only significant
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advantage of a successful mMMDS here, that the axis scales could then be read as Bray-Curtis
dissimilarities, is entirely nullified. The ordination scale suggests that times G and O (the first week
of August in 1978 and 1980) are separated by a distance (=dissimilarity) of nearly 70, yet the real
value is around 50; this is a direct result of the way the points form a steeper gradient than the
fitted line in Fig. 5.12c. What this figure strongly suggests, in fact, is that we can retain a linear
relationship of distance with dissimilarity, using what we shall term a threshold metric MDS
(tmMDS), by fitting a linear regression to the Shepard plot but with a non-zero intercept (this is an
option in PRIMER7’'s mMDS).
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Fig. 5.12. Amoco-Cadiz oil-spill {A}. a&c) mMDS for 21 sampling times (data as Fig. 5.8) and
Shepard plot (stress 0.23); b&d) threshold mMDS and Shepard plot (stress 0.12)

The resulting tmMDS and Shepard plot are shown in Fig. 5.12 b&d. The model is seen to fit very
well and the stress greatly reduces, to a very acceptable 0.12, (not much higher than the vastly
more flexible step function of nMDS, with stress 0.09). The resulting ordination is now virtually
identical to the 2-d nMDS, Fig. 5.8a, and because the linear threshold model in Fig. 5.12d fits the
dissimilarities so accurately and tightly, we are justified in interpreting the distance scales on the
mMDS axes as dissimilarities, after one adjustment. Dissimilarities of about 20, the intercept on the
X axis in the Shepard plot, are represented in the ordination by zero distance, i.e. the points for
those samples would effectively coincide (samples B and C are a case in point, with dissimilarity of
17, the lowest in the matrix). Points G and O are now separated by about 30 units on the mMDS
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axes, so their dissimilarity is represented as being 20+30 = 50 (and their true dissimilarity is a
slightly fortuitous 49.9!)

Reference was made earlier to the way PCO and PCA hope to display meaningful structure on the
first few axes and remove smaller-scale sampling variation by projecting across the higher PCs.
nMDS can achieve this in a different way, by compression of the scale of smaller dissimilarities,
smoothly ‘tailing in” samples below a certain dissimilarity to be represented by points closer
together on the plot than could happen under standard mMDS, where the linearity demands that
only points of zero dissimilarity are coincident. Threshold mMDS, using liner regression not through
the origin, is thus a combination of metric and non-metric ideas: points below some fitted threshold
of dissimilarity (20 here) are literally placed on top of each other, so what could be just sampling
variation (e.g. among replicates at the same point in space or time or treatment combination) is
eliminated in that way. Above the threshold, strict linearity is enforced, so such a threshold mMDS
is not well-suited to many cases which have long baseline gradients of assemblage change (such
as Fig. 5.2) where samples have few or no species in common and dissimilarities abut 100. Where
the Shepard plot shows them to be accurate models, with low stress, mMDS and threshold mMDS
bring the advantage of interpretable axis scales for the MDS plot; where they are less accurate,
nMDS is usually much preferable.

Combined nMDS and mMDS ordinations

The combination of non-metric and metric concepts can be taken one logical step further¥, to

tackle a problem raised on page 5.2, which can occur with nMDS, that of degenerate solutions with
zero stress arising from the collapse of the ordination into two (or a small number of) groups, in
cases where among- group dissimilarities are all uniformly larger than any within-group ones. The
non-metric algorithm can then place such groups infinitely far apart (in effect) and the display of
any real within-group structure is lost as they collapse to points. The problem does not arise at all
for standard mMDS (or PCO/PCA) since positioning of the most distant samples is constrained by
the simple linear relation with smaller distances.

In cases of collapse where there are very few points in the ordination in the first place, an mMDS
solution is an obvious place to start. In an extreme case, e.g. when ordinating only 3 points, nMDS
will not run at all (the only data available to it are the three ranks 1, 2, 3!). Such cases are not
pathological - they arise very naturally when looking at the equivalent of ‘means plots’ for
multivariate analyses. Just as in univariate analyses, where an ANOVA is followed by plots of the
means, e.g. ‘main effects’ of a factor, so in multivariate analysis, ANOSIM or PERMANOVA tests are
followed by ordinations of the averages or centroids of the factor levels, to interpret the
relationships among groups that have been demonstrated by tests at the replicate level. Such plots
can sometimes have very few points and mMDS can then provide an effective, low stress, solution
to displaying them.

However, for less trivial numbers of points, and in the common cases where Shepard plots are non-
linear and the flexibility of nMDS is required, an effective solution to ‘collapsing plots’ is to combine
mMDS and nMDS stress functions over all dissimilarities, in mixing proportions of (say) 0.05 and
0.95.
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T PRIMER v7 also offers a dynamic display of the ‘evolution’ of a community in 3-d MDS space,
typically over a time course. This is unnecessary for Fig 5.9b because there are only 21 points and
they do not tread similar paths at later times, but the continued study of the macrobenthos at
station ‘Pierre Noire’ in Morlaix Bay over three decades has given rise to a data set of nearly 200
time steps and a complex, multi-layered 3-d plot; it is then fascinating to watch the evolving
trajectory of newer samples over the fading background of older community samples, and thus to
set the potential oil-spill effects in the context of longer-term inter-annual patterns.

' Such examples are very useful in explaining the purpose and interpretation of ordinations to the
non-specialist and are quite commonly found (e.g. Everitt (1978) starts from a road distance

matrix for UK cities; Clarke (1993) uses the example in this chapter of great-circle distances
between world cities, taken from the Reader’s Digest Great World Atlas of 1962).

§ Note that, though a Shepard diagram is not normally produced by a PCO, it can be created in
PRIMER7 (with PERMANOVA+) by saving the 2-d PCO co-ordinates to a worksheet, calculating the
Euclidean distances, using Unravel to generate a single y axis column, and likewise for the original
distances (x), and running a Scatter Plot of y on x. Note also that PCO looks close to being PCA
here, but is not - great-circle distances are not Euclidean.

¥ Though not implemented in the same way as in the PRIMER7 ‘Fix Collapse’ option, and with
different motivation, the hybrid scaling (HS) technique of Faith, Minchin & Belbin (1987) , and the

semi-strong hybrid scaling (SHS) of Belbin (1991) , introduced this combination idea into ecology
in the PATN software. Briefly, using the original Kruskal, Young and Seer software (KYST), which
allows combined stress function optimisation, HS mixes mMDS for all dissimilarities below a
specified value with nMDS on the full set of dissimilarities. SHS also uses mMDS below a specified
value but mixes that with nMDS above that value (and also substitutes Guttman’s algorithm for
Kruskal’s). The primary motivation is in reconstruction of ecological gradients driven
environmentally on a transect or grid and the methods do not appear to be optimal for a
‘collapsing MDS’ problem, since neither applies a direct constraint to dissimilarities greater than
the threshold. (E.g. they would not stop the collapse for two well-separated groups whose between-
group dissimilarities all exceeded that threshold.) The approach of this section achieves this by the
common metric scale imposed (very mildly) on the largest distances by smaller ones.
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