6.3 Example: Frierfjord macrofauna

The rank similarities underlying Fig. 6.3 are shown in Table 6.2 (note that these are the similarities
involving only sites B, C and D, extracted from the matrix for all sites and re-ranked). Averaging
across the 3 diagonal sub-matrices (within groups B, C and D) gives $\overline{r} W = 22.7$, and
across the remaining (off-diagonal) entries gives $\overline{r} W = 37.5%. Also $n = 12%$ and $M =
66%, so that $R = 0.45%. In contrast, the spread of R values possible from random re-labelling of
the 12 samples can be seen in the histogram of Fig. 6.4: the largest of $T = 999% simulations is
less than 0.45 ($t = 0%). An observed value of $R = 0.45% is seen to be a most unlikely event, with
a probability of less than 1 in a 1000 if H$_o$ is true, and we can therefore reject H$_o0$ at a
significance level of p<0.1% (at least, because $R = 0.45% may still have been the most extreme
outcome observed had we chosen an even larger number of permutations. If it is the most extreme
of all 5775 - it will be one of them - then p = 100(1/5775) = 0.02%).

Table 6.2. Frierfjord macrofauna {F}. Rank similarity matrix for the 4 replicates from each of B, C
and D, i.e. C3 and C4 are the most, and B1 and C1 the least, similar samples.

Bl B2 B3 B4 Cl Cc2 C3 c4 D1 D2 D3 D4
Bl -
B2 33 -
B3 8 7 -
B4 22 11 19 -
C1l 66 30 58 65 -
C2 44 3 15 28 29 -
C3 23 16 5 38 57 6 -
Cc4 9 34 4 32 61 10 1 -
D1 48 17 42 56 37 55 51 62 -
D2 14 20 24 39 52 46 35 36 21 -
D3 59 49 50 64 54 53 63 60 43 41 -
D4 40 12 18 45 47 27 26 31 25 2 13 -

Pairwise tests

The above is a global test, indicating that there are site differences somewhere that may be worth
examining further. Specific pairs of sites can then be compared: for example, the similarities
involving only sites B and C are extracted, re-ranked and the test procedure repeated, giving an R
value of 0.23. This time there are only 35 distinct relabellings so, under the null hypothesis H$ _ 0%
that sites B and C do not differ, the full permutation distribution of possible values of R can be



computed; 12% of these values are equal to or larger than 0.23 so H$ _ 0$ cannot be rejected. By
contrast, R = 0.54 for the comparison of B against D, which is the most extreme value possible
under the 35 permutations. B and D are therefore inferred to differ significantly at the p< 3% level.
For C against D, R = 0.57 similarly leads to rejection of the null hypothesis (p<3%).
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Fig. 6.4. Frierfjord macrofauna {F}. Permutation distribution of the test statistic R (equation 6.1)
under the null hypothesis of ‘no site differences’; this contrasts with an observed value for R of
0.45.

There is a danger in such repeated significance tests which should be noted (although rather little
can be done to ameliorate it here). To reject the null hypothesis at a significance level of 3%
implies that a 3% risk is being run of drawing an incorrect conclusion (a Type I error in statistical
terminology). If many such tests are performed this risk will cumulate. For example, all pairwise
comparisons between 10 sites, each with 4 replicates (allowing 3% level tests at best), would
involve 45 tests, and the overall risk of drawing at least one false conclusion is high. For the
anhalogous pairwise comparisons following the global F test in a univariate ANOVA, there exist
multiple comparison tests which attempt to adjust for this repetition of risk. One straightforward
possibility, which could be carried over to the present multivariate test, is a Bonferroni correction.
In its simplest form, this demands that, if there are n pairwise comparisons in total, each test uses
a significance level of 0.05/n. The so-called experiment-wise Type | error, the overall probability of
rejecting the null hypothesis at least once in the series of pairwise tests, when there are no
genuine differences, is then kept to 0.05.
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However, the difficulty with such a Bonferroni correction is clear from the above example: with only
4 replicates in each group, and thus only 35 possible permutations, a significance level of 0.05/3
(=1.7%) can never be achieved! It may be possible to plan for a modest improvement in the
number of replicates: 5 replicates from each site would allow a 1% level test for a pairwise
comparison, equation (6.2) showing that there are then 126 permutations, and two groups of 6
replicates would give close to a 0.2% level test. However, this may not be realistic in some
practical contexts, or it may be inefficient to concentrate effort on too many replicates at one site,
rather than (say) increasing the spatial coverage of sites. Also, for a fixed number of replicates, a
too demandingly low Type | error (significance level) will be at the expense of a greater risk of Type
Il error, the probability of not detecting a difference when one genuinely exists.

Strategy for interpretation

The solution, as with all significance tests, is to treat them in a more pragmatic way, exercising due
caution in interpretation certainly, but not allowing the formality of a test procedure for pairwise
comparisons to interfere with the natural explanation of the group differences. Herein lies the real
strength of defining a test statistic, such as R, which has an absolute interpretation of its valuef.
This is in contrast to a standard Z-type statistic, which typically divides an appropriate measure
(taking the value zero under the null hypothesis) by its standard deviation, so that interpretation is
limited purely to statistical significance of the departure from zero.

The recommended course of action, for a case such as the above Frierfjord data, is therefore
always to carry out, and take totally seriously, the global ANOSIM test for overall differences
between groups. Usually the total number of replicates, and thus possible permutations, is
relatively large, and the test will be reliable and informative. If it is not significant, then generally
no further interpretation is permissible. If it is significant, it is legitimate to ask where the main
between-group differences have arisen. The best tool for this is an examination of the R value for
each pairwise comparison: large values (close to unity) are indicative of complete separation of the
groups, small values (close to zero) imply little or no segregation. If the MDS is of sufficiently low
stress to give a reliable picture, then the relative group separations will also be evident from this."
The R value itself is not unduly affected by the number of replicates in the two groups being
compared; this is in stark contrast to its statistical significance, which is dominated by the group
sizes (for large numbers of replicates, R values near zero could still be deemed ‘significant’, and
conversely, few replicates could lead to R values close to unity being classed as ‘non-significant’).

The analogue of this approach in the univariate case (say in the comparison of species richness
between sites) would be firstly to compute the global F test for the ANOVA. If this establishes that
there are significant overall differences between sites, the size of the effects would be ascertained
by examining the differences in mean values between each pair of sites, or equivalently, by simply
looking at a plot of how the mean richness varies across sites (usually without the replicates also
shown). It is then immediately apparent where the main differences lie, and the interpretation is a
natural one, emphasising the important biological features (e.g. absolute loss in richness is 5, 10,
20 species, or relative loss is 5%, 10%, 20% of the species pool, etc), rather than putting the
emphasis solely on significance levels in pairwise comparisons of means that run the risk of
missing the main message altogether.



So, returning to the multivariate data of the above Frierfjord example, interpretation of the ANOSIM
tests is seen to be straightforward: a significant level (p<0.1%) and a mid-range value of R (= 0.45)
for the global test of sites B, C and D establishes that there are statistically significant differences
between these sites. Similarly mid-range values of R (slightly higher, at 0.54 and 0.57) for the Bv D
and C v D comparisons, contrasted with a much lower value (of 0.27) for B v C, imply that the
explanation for the global test result is that D differs from both B and C, but the latter sites are not
distinguishable.

The above discussion has raised the issue of Type Il error for an ANOSIM permutation test, and the
complementary concept, that of the power of the test, namely the probability of detecting a
difference between groups when one genuinely exists. Ideas of power are not easily examined for
non-parametric procedures of this type, which make no distributional assumptions and for which it
is difficult to specify a precise non-null hypothesis. All that can be obviously said in general is that
power will improve with increasing replication, and some low levels of replication should be
avoided altogether. For example, if comparing only two groups with a 1-way ANOSIM test, based on
only 3 replicates for each group, then there are only 10 distinct permutations and a significance
level better than 10% could never be attained. A test demanding a significance level of 5% would
then have no power to detect a difference between the groups, however large that difference is!

Generality of application

It is evident that few, if any, assumptions are made about the data in constructing the 1-way
ANOSIM test, and it is therefore very generally applicable. It is not restricted to Bray-Curtis
similarities or even to similarities computed from species abundance data: it could provide a non-
parametric alternative to Wilks’ L test for data which are more nearly multivariate-normally
distributed, e.g. for testing whether groups (sites or times) can be distinguished on the basis of

their environmental data (see Chapter 11). The latter would involve computing a Euclidean
distance matrix between samples (after suitable transformation and normalising of the
environmental variables) and entry of this distance matrix to the ANOSIM procedure. Clearly, if
multivariate normality assumptions are genuinely justified then the ANOSIM test must lack
sensitivity in comparison with standard MANOVA, but this would seem to be more than
compensated for by its greater generality.

Note also that there is no restriction to a balanced number of replicates. Some groups could even
have only one replicate provided enough replication exists in other groups to generate sufficient
permutations for the global test (though there will be a sense in which the power of the test is
compromised by a markedly unbalanced design, here as elsewhere). More usefully, note that no
assumptions have been made about the variability of within-group replication needing to be similar
for all groups. This is seen in the following example, for which the groups in the 1-way layout are
not sites but samples from different years at a single site.

t A standard correlation coefficient, r, would be another example, like ANOSIM R, of a statistic
which is both a test statistic (for the null hypothesis of absence of correlation, r = 0) and which has
an interpretation as an effect size (large r is strong correlation).

' But the comparison of ANOSIM R values is the more generally valid approach, e.g. when the two
descriptions do not appear to be showing quite the same thing. Calculation of R is in no way
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dependent on whether the 2-dimensional approximation implicit in an MDS is satisfactory or not,
since R is computed from the underlying, full-dimensional similarity matrix.
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