
There is a clear dichotomy, in defining sample similarities, between methods which give each
variable (species) equal weight, such as normalisation or species standardisation, and those which
treat counts (of whatever species) as comparable and therefore give greater weight to more
numerically dominant species. As pointed out above, giving rare species the same weight as
dominant ones bundles in a great deal of ‘noise’, diffusing the ‘signal’, but it can be equally
unhelpful to allow the analysis to be driven by highly abundant, but very erratic counts, from motile
species occurring in schools, or more static species which are spatially clumped by virtue of their
colonising or reproductive patterns. A severe transformation will certainly reduce the dominance of
such species, but it can be seen as rather a blunt instrument, since it also squeezes out much of
the quantitative information from mid- or low-abundance species, some of which may not exhibit
this erratic behaviour over replicates of the same condition (site/time/treatment), because they are
not spatially clumped. If data are genuinely counts and information from replicates is available, a
better solution ( Clarke, Chapman, Somerfield et al. (2006) ) is to weight species differently,
according to the reliability of the information they contain, namely the extent to which their counts
in replicates display overdispersion.

It is important to appreciate the subtlety of the idea of dispersion weighting: species are not down-
weighted because they show large variation across the full set of samples; they may do that
because their abundance changes strongly across the different conditions (and it is precisely those
species which will best indicate community change). Species are down-weighted if they have high
variability, for their mean count, in replicates of the same condition. In fact, we must be careful to
make no use of information about the way abundances vary across conditions when determining
the weight each species gets in the analysis, otherwise we are in serious danger of a self-fulfilling
argument (e.g. high weight given to species which, on visual inspection, appear to show the
greatest differences between groups will clearly bias tests unfairly in favour of demonstrating
community change, just as surely as picking out only a subset of species, a posteriori, to input to
the analyses).

Dispersion weighting (DW) therefore simply divides all counts for a single species by a particular
constant, calculated as the index of dispersion D (the ratio of the variance to the mean) within each
group, averaged across all groups to give divisor $\overline{D}$ for that species. The justification
for this is a rather simple but general model in which counts of a species in each replicate are from
a generalised Poisson distribution. Details are given in  Clarke, Chapman, Somerfield et al. (2006) ,
but the concept is illustrated in Fig. 9.2, thought of as replicate quadrats ‘catching’ a different
number of centres of population (clumps) for that species as the conditions (groups) change, but
with each centre containing a variable number of individuals, with unknown probability distribution.
The only assumption is that the different conditions change the number of clumps but not the
average or standard deviation of the clump size, e.g. in some sites a particular species is quite
commonly found and in others hardly at all, but its propensity to school or clump is something
innate to the species.

9.5 Dispersion weighting
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Fig 9.2 Simple graphic of generalised Poisson model for counts of a single species: centres of
population are spatially random but with density varying across groups (sites/times/treatments).
The distribution of the number of individuals(≥1) found at each centre is assumed constant across
groups, though unknown.
 

Technically, for a particular species, if the number of centres in a replicate from group g has a
Poisson distribution with mean $\nu _ g$ and the number of individuals at each centre has an
unknown distribution with mean $\mu$ and variance $\sigma^2$, then $X _ j$, the count in the jth
replicate from group g, has mean $\nu _ g \mu$ and variance $\nu _ g (\mu ^ 2 + \sigma ^ 2)$.
Thus the index of dispersion D, the ratio of variance to mean counts for the group is $(\mu ^ 2 +
\sigma ^ 2)/\mu$ and this is not a function of $\nu _ g$, i.e. D is the same for all groups, and an
average D can be computed across groups (weighted, if replicates unbalanced). Dividing all counts
by this average gives values which have the ‘Poisson-like’ property of variance $\approx$ mean.

The process is repeated for all species separately. Note that there is certainly no assumption that
the clump size distribution is the same for all species, not even in distributional form: some species
will be heavily clumped, others not at all, with all possibilities in between, but all are reduced by
DW to giving (non-integral) abundances that are equally variable in relation to their mean, i.e. the
unwanted contributions made by large but highly erratic counts are greatly down-weighted by their
large dispersion indices.
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Table 9.5. Simple example of dispersion weighting (DW) on abundances from a matrix of two
species sampled for two groups (e.g. sites/times), each of eight replicates. Prior to DW, species 2
would receive greater weight but its arrivals are clumped. After DW, the species have identical
entries in the matrix.
 

One simple (over-simple) way of thinking of this is that we count clumps instead of individuals, and
the calculation for such a simple hypothetical case is illustrated above. Here, there are two groups,
with 8 replicates per group and two species. The individuals of species 1 arrive independently (the
replicates show the Poisson-like property of variance $\approx$ mean) whereas species 2 has an
identical pattern of arrivals but of clumps of 5 individuals at a time. Dividing through each set of
species counts by the averaged dispersion indices (1.1 and 5.5 respectively) would reduce both
rows of data to the same Poisson-like ‘abundances’.¶

However, DW is much more general than this simple case implies. The generalised Poisson model
certainly includes the case of fixed-size clumps, and the even simpler case where the clump size is
one, so that individuals arrive into the sample independently of each other, for which the counts
are then Poisson and D=1 (DW applies no down-weighting). More realistically, it includes the
Negative Binomial distribution as a special case, a distribution often advocated for fully parametric
modelling of overdispersed counts (e.g. recently by  Warton, Wright & Wang (2012) ). Such
modelling needs the further assumption that the clump size distribution is of the same type for all
species, namely Fisher’s log series. Also subsumed under DW are the Neyman type A (where the
clump size distribution is also Poisson) and the Pólya-Aeppli (geometric clump size distribution) and
many others.

Our approach here is to remain firmly distribution-free. In order to remove the large contributions
that highly erratic (clumped) species counts can make to multivariate analyses such as the SIMPER
procedure, it is not necessary (as  Warton, Wright & Wang (2012)  advocate) to throw out all the
advantages of a fully multivariate approach to analysis, based on a biologically relevant similarity
matrix, replacing them with what might be characterised as ‘parallel univariate analyses’. (This
seems a classic case of ‘throwing the baby out with the bathwater’). Instead, it is simply necessary
first to down-weight such species semi-parametrically, by dispersion weighting, which subsumes
the negative binomial and many other commonly-used parametric models for overdispersed
counts, and the (perceived§) problem disappears.
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¶ In fact the counts for species 1 would not lead to rejection of the null hypothesis of independent
random arrivals (D=1) in this case, using the permutation test discussed later, so no DW would be
applied to species 1.

§ It is relevant to point out here that the later example (and much other experience) suggests that,
whilst DW is more logically satisfactory than the cruder use of severe transformations for this
purpose, the practical differences between analyses based on DW and on simple transforms are, at
their greatest, only marginal. Since most of the 10,000+ papers using PRIMER software in its 20-
year history have used transformed data (PRIMER even issues a warning if Bray-Curtis calculation
has not been preceded by a transformation), Warton’s conclusions, largely based on analyses of
untransformed data, that “hundreds of papers every year currently use methods [which] risk
undesirable consequences” seem unjustified.
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