
Somerfield, Gee & Warwick (1994a)  and  Somerfield, Gee & Warwick (1994b)  present biotic and
environmental data from five creeks of the Fal estuary, SW England, whose sediments can contain
high heavy metal levels resulting from historic tin and copper mining in the surrounding valleys (
{f}, Fig. 9.3).

9.6 Example: Fal estuary copepods
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Fig. 9.3 Fal estuary copepods {f}. Five creeks sampled for meiofauna/macrofauna
 

Table 9.6. Fal estuary copepods {f}. Original counts from five replicate meiofaunal cores in each of
two creeks (Mylor and Pill). Final three columns give the average dispersion index, its significance,
and the divisor used to downweight each row (matrix is ordered by the latter) under the dispersion
weighting procedure. Divisor=1 if permutation test does not give significant clumping for that
species.

 

Here, only the infaunal copepod counts are analysed, from five replicate meiofaunal cores in each
of two creeks (Mylor, M and Pill, P), subject to differing sediment concentrations of contaminants
(Table 9.6). Species are listed in decreasing order of their average dispersion index $\overline{D}$
over the two groups, e.g. for the first species, Platychelipus littoralis, $D _ M =35.9$ and $D _ P
=36.2$, giving average $\overline{D} = 36.1 $, the divisor for the first row of the matrix. This
represents rather strong overdispersion for this species, as does the divisor $\overline{D} = 27.7$
for the second row, Enhydrosoma gariene. In fact, the highest counts in the matrix are found in
these two species and, without DW, they would have played an influential role in determining the
similarity measures input to the multivariate analyses. But their counts are not consistent over
replicates, ranging from 1 to 88, 12 to 112, 19 to 130 etc, hence giving large dispersion indices
(variance-to-mean ratios). The dispersion-weighted values, however, are now much lower, ranging
only up to 3 or 4, and therefore strongly down-weighted in favour of more consistent species (over
replicates), such as Microarthridion fallax. Its counts were initially similarly high but are subject to a
much lower divisor, so this fourth row of the weighted matrix now ranges up to 13, giving it much
greater prominence. Interestingly, even quite low-abundance species, such as the last in the list (
Stenhelia elizabethae) will now make a significant contribution, because of its consistency; it does
not get down-weighted at all, as the following permutation test shows.
 

Test for overdispersion
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The final six species in the table exhibit no significant evidence of overdispersion at all, and their
divisor is therefore 1. What is needed here to examine this is a test of the null hypothesis $D=1$ in
all groups, and a relevant large-sample test is based on the standard Wald statistic for multinomial
likelihoods (further details in  Clarke, Chapman, Somerfield et al. (2006) ). This has the familiar chi-
squared form, e.g. for Tachidius discipes how likely is it that observed counts for Mylor of 6, 2, 8, 0,
0 could arise from placing 16 individuals into 5 replicates independently and with equal probability,
i.e. when the ‘expected’ values in each replicate are 3.2? Simultaneously, how likely is it that the
two individuals from Pill both fall into the same replicate if they arrive independently (i.e. observed
values are 0, 0, 0, 0, 2 and expected values 0.4 in each cell)? The usual chi-squared form $X ^2 =
\sum \left[ (Obs - Exp)^2 / Exp \right] $ can be computed, but these are far from large samples so
its distribution under the null hypothesis will only be poorly approximated by the standard $\chi ^
2$ distribution on 8 df. Instead, in keeping with other tests of this manual, the null distribution is
simply created by permutation: 16 and 2 individuals are randomly and independently placed into
the first and second set of replicates, respectively, and $X ^ 2$ recalculated many times. For T.
discipes the observed $X ^ 2$ is larger than any number of simulated ones and $D=1$ can be
firmly rejected, so the divisor of 3.1 is used, but for the final 6 species $D=1$ is not rejected (at
p=5% on this one-tailed test), and no down-weighting is carried out.

Fig 9.4 Fal estuary copepods {f}. MDS of copepod assemblages for 5 meiofaunal cores in each of
two creeks (Mylor and Pill), from Bray-Curtis similarities on: a) untransformed counts; b) dispersion-
weighted counts
 

Effect of dispersion weighting

The effect of DW on the multivariate analysis can be seen in Fig. 9.4, which contrasts the (non-
metric) MDS plots from Bray-Curtis similarities based on untransformed and dispersion-weighted
counts. A major difference is not observed, but there is a clear suggestion that the replicates within
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the M group in particular have tightened up, and the distinction between the two groups enhanced.
The former is exactly what might be expected: by down-weighting species with large but erratic
abundances in replicates we should be reducing the ‘noise’, allowing any ‘signal’ that may be there
to be seen more clearly. But the latter cannot, and should not, be guaranteed. It is perfectly
possible that when attention is focussed on the species that are consistent in replicates, they may
display no change at all across groups – so be it. In fact, in this case, DW makes a sizeable
difference to the ANOSIM test for the group effect, with the R statistic increasing from 0.41 to 0.71
after DW.
 

Shade plots to demonstrate matrix changes

The explanation, in terms of particular species, for changes seen in the multivariate analyses
following DW, are well illustrated by simple shade plots (p7-7,  Clarke, Tweedley & Valesini (2014)
). For these visual representations of the data matrices, the intensity of grey shading is linearly
proportional to the matrix entry, with white representing absence and full black the largest count
(or weighted count) in the matrix, Fig. 9.5. Here, the species have been ordered according to a
species clustering using the index of association on the original counts (equation 7.1), and the
same species ordering is preserved for the shade plot under DW. It is readily seen that some of the
less erratic species, such as M. fallax and S. elizabethae, do show a clear pattern of larger values at
Mylor than Pill, and several other species which are not heavily down-weighted (Enhydrosoma
longifurcatum, Amphiascoides limicola, Mesochra lilljeborgi) show the reverse pattern. The highly
erratic species formerly given the most weight, P. littoralis and E. gariene, did not clearly
distinguish the two creeks, so that their reduction in importance under DW has again, in this case,
aided discrimination of the two groups.
 

Further DW issues

The DW procedure makes few assumptions about the data, but is derived from a model in which
the degree of clumping, and thus the index of dispersion, of a particular species is constant across
groups. In some cases this may well be a poor assumption, e.g. when impacts represented by a
group structure affect both the propensity for that species to clump as well as the density of clump
centres. Clearly, in that case, we must not use a different dispersion divisor D for each group; as
earlier emphasised, doing different things for each group risks creating an artefactual group effect
where none exists. Using an averaged index ($\overline{D}$) across groups might thus still
provide a sensible ‘middle course’ in deciding how much weight to give to that species. Faced with
the alternatives of doing no species weighting (so that erratic, clumped species dominate) or giving
all species, abundant and rare, exactly the same weight (e.g. as in normalising the variables or the
implicit standardisations of a Gower resemblance measure), DW may indeed be a robust general
means of weighting species. As is seen later (e.g. Chapter 10 and 16 and Fig. 13.8), even quite
major changes to the balance of information utilised from different species can have surprisingly
little effect on a multivariate analysis, mainly because the latter typically uses only a small amount
of information from each species and the same driving patterns are present in many species.
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Fig. 9.5 Fal estuary copepods {f}. Shade plot, showing: left-hand, the untransformed counts of
Table 9.6, represented by rectangles of linearly increasing grey scale (species clustering gives y-
axis ordering); right-hand, the dispersion weighted values (maximum 13.4).
 

Clarke, Chapman, Somerfield et al. (2006)  discuss further DW questions naturally arising. For
example, should one upweight species that are significantly underdispersed, i.e. are territorially
spaced, more evenly than expected under randomness, so that replicate counts are ‘too similar’
and chi-squared is significantly small? This is rarely observed, in the marine environment at least!
Indeed, one of the beneficial side effects of applying DW is likely to be a clearer understanding of
how a range of species are distributed in the environment, through histograms of dispersion
indices calculated from all species in assemblages of different faunal types.

Also, how much more general can the DW idea be made? Clearly the test for D=1 is based on a
realistic probability model for genuine counts but, if the testing structure is ignored, it would still
logically make sense to apply downweighting by the variance-to-mean ratio for densities as well as
counts, at least provided the adjustment from count to density was only of a modestly varying
constant across samples. (A typical context might be where real counts from trawl samples are
variably adjusted for modest differences in the volume of water filtered.) An extension to area
cover data for rocky-shore or coral reef studies seems equally plausible. Here, the ‘counts’ can be
thought of as number of grid points within a sampled area (one replicate) which fall on a particular
species. If an individual algal or coral colony is larger than the grain of the grid points then the
same colony will be ‘captured’ by several points, expressed as over-dispersion of the ‘counts’ from
replicate to replicate (in the extreme, one species with an average area cover of 50% might vary
from 100% in one replicate to 0% in the next, where another ubiquitous species, whose clump size
is much smaller than the sampling grain, might record variation of only 40% to 60%). Relative
down-weighting by dispersion indices then makes reasonable sense, and similar arguments could
be adduced for biomass data of motile species. Larger-bodied species give greater ‘overdispersed’
biomass relative to smaller-bodied ones. In fact, by overlaying the previous model of real counts of
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organisms with a fixed body mass per individual (varying between species), relative downweighting
by D works in exactly the same way as earlier, removing at the same time both greater clumping of
individuals and the size differential between species, to leave a natural and robust weighting of the
different species in subsequent multivariate analyses. It is, however, only relative D values that
matter in all these cases; D=1 has no meaning outside the case of real counts.
 

DW vs. Transformation

DW is advocated above as an alternative to transformation, providing a more targeted way of
dealing with large and highly variable counts in some species. The disadvantage of simple, severe
transformations in this context (e.g. fourth root) is that, whilst effective in reducing the contribution
of the erratic P. littoralis and E. gariene in the earlier example, they will also ‘squash’ consistent
but low-abundance species, such as S. elizabethae, into a near presence/absence state.
Nonetheless, simple transformations can be applied universally (e.g. without the need for
replicates), and will often give similar results to DW. A fourth root transformation here actually
leads to an even higher R value for the ANOSIM test for a group difference of 0.81, and the MDS
plot, while similar, tightens up the Pill group by giving less emphasis to the lower total abundance
at P5 than the other Pill creek sites; the latter was clearly seen in the shade plot, Fig. 9.5.

A shade plot for this fourth-root transformed matrix is shown in Fig. 9.6 (left-hand plot) and it is
clear that the multivariate analyses will now mainly be driven by the differing presence/absence
structure, with the originally important species playing a much smaller role (e.g. M. fallax now
appears scarcely to differ between the two creeks).
 

DW and Transformation

However, the key step here is to realise that DW and transformation are not necessarily
alternatives; it may be optimal to use them in combination. DW directly addresses the problem of
undue emphasis being given to high abundance-high variance species, ensuring all weighted
species values now have strictly comparable reliability. But DW does not address the primary
motivation for transformations outlined in Chapter 2, that of better balancing the contributions
from less abundant (and consistent) species with the more abundant (and now equally consistent)
species. Not all high abundance species are erratic in replicates and, if they are, they may still
have largely dominant values after DW has ensured their consistency. In short: DW is applied for
statistical reasons but we may still need to transform further (after DW) for biological reasons, if we
seek a ‘deeper rather than shallower’ view of the assemblage. That transform will likely now be
less severe than if no DW had been carried out since it is no longer trying to address two issues at
once. Here, the shade plot for DW followed by square root transformation is shown in Fig. 9.6
(right-hand plot) and this combination does actually give (marginally) the best separation of Mylor
and Pill creeks in the multivariate analysis, amongst the analyses shown here, with R = 0.85.
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Fig. 9.6 Fal estuary copepods {f}. Shade plot, with linear grey scale for: left-hand, 4th-root
transformed counts; right-hand, dispersion weighted values subsequently square-root transformed.
Species order kept the same as in (untransformed) species clustering, Fig. 9.5.
 

This is not an uncommon finding.  Clarke, Tweedley & Valesini (2014)  describe the role of shade
plots in assisting long-term choice of better transformation and/or DW strategies, and give
examples. One is of fish studies in which highly schooling species, though heavily down-weighted
by DW (by two orders of magnitude), remain dominant because they are consistently found in
some quantity in all replicates. DW followed by mild transformation was transparently a better
option than either DW or severe transformation on its own.

‘Long-term choice’ is an important phrase here: one must avoid the selection bias inherent in
chasing the best combination of DW and transformation for each new study – ‘best’ in the sense of
appealing most to our preconceptions of what the analysis should have demonstrated! Instead, the
idea is to settle on a pre-treatment strategy to be used consistently in future for that faunal type in
those sampling contexts.
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