
Central to an understanding of what an interaction means for linear models25 is the idea of
additivity. Consider the example of a two-way crossed design for a univariate response variable,
where the cell means and marginal means are as shown in Fig. 1.19a. Note that the marginal
means are the means of the levels of each factor ignoring the other factor. In an additive model,
the difference between two levels of a factor (say between B1 and B2) between individual cells
(i.e., within each level of A, that is to say, within each column) are equal to the differences in the
marginal means (i.e., the difference between the mean of B1 and B2 if factor A were to be
ignored). This can be contrasted with the situation where the differences in cell means are quite
different from the differences in marginal means (e.g., Fig. 1.19b), in which case, there is an
interaction between the factors. So, this is another way to articulate what is meant by a significant
interaction: effects of factors within levels of other factors are non-additive and thus do not match
the corresponding shifts in marginal means. The interaction term, in fact, measures the deviation
of the cell means we actually got from what we would expect them to be if they were to follow the
marginal means, as would be the case if the effects of the two factors were purely additive.

Fig. 1.19. Marginal and cell means for a univariate crossed design showing examples of (a)
additive effects, (b) multiplicative effects and (c) additivity after log10-transformation of (b).

Clearly, the additivity (or not) of the effects of factors is also going to depend on whether or not the
data have been transformed (or standardised or ranked) prior to analysis. This is as true for
multivariate data as it is for univariate data. For example, if a log (base 10) transformation is
applied to the means shown in Fig. 1.19b, then we would have an additive model with no
significant interaction (Fig. 1.19c). Such a situation typifies phenomena where the true effects are
multiplicative, rather than being additive. In univariate analysis, transformations can often be used
to remove significant interaction terms, yielding additivity ( Tukey (1949) ,  Box & Cox (1964) , 
Kruskal (1965) ,  Winsberg & Ramsay (1980) ).

For multivariate analysis of ecological data, however, transformations are usually applied neither to
fulfill assumptions, nor in order to remove significant interactions, but rather as a method of
changing the relative emphasis of the analysis on rare versus more abundant species (e.g.,  Clarke
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& Green (1988) ,  Clarke & Warwick (2001) ). In PRIMER, a blanket transformation can be applied to
all variables by choosing Analyse > Pre-treatment > Transform (overall) and then choosing
from a range, in increasing severity, from no transformation, square root, fourth root or log(x+1)
down to a reduction of the values to binary presence (1) or absence (0). An approach using an
intermediate-level transformation (square root or fourth root) has been recommended as a way to
reduce the contribution of highly abundant species in relation to less abundant ones in the
calculation of the Bray-Curtis measure; rare species will contribute more, the more severe the
transformation ( Clarke & Green (1988) ,  Clarke & Warwick (2001) ).

In addition to the transformation, additivity of effects in multivariate analysis is also going to
depend on whether or not the dissimilarities are ranked before analysis (yet another reason why
patterns in a non-metric MDS, which preserves ranks only, may not necessarily clearly reflect what
is given in the PERMANOVA output). The choice of dissimilarity measure itself is also very important
here. By performing the partitioning, PERMANOVA is effectively applying a linear model to a
multivariate data cloud, as defined by these choices. So the presence of a significant interaction (or
not) by PERMANOVA will naturally depend on them. Nevertheless, the choice of an appropriate
dissimilarity measure (and also the choice of transformation, if any) should genuinely be driven by
the biology and ecology (or other nature) of the system being studied and what is appropriate
regarding your hypotheses, and not by reference to these statistical issues (unlike typical
traditional univariate ANOVA).

25 The ANOVA models analysed by PERMANOVA are linear only in the space of the multivariate
cloud defined by the dissimilarity measure of choice; they are not linear in the space of the original
variables (unless the resemblance measure chosen was Euclidean distance).
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