1.28 Estimating components of
variation

The EMS’s also yield another important insight: they provide a direct method to get unbiased
estimates of each of the components of variation in the model. PERMANOVA estimates these
components using mean squares, in a directly analogous fashion to the unbiased univariate ANOVA
estimators of variance components (e.g., Searle, Casella & McCulloch (1992) ). In essence, this is

achieved by setting the mean squares equal to their expectations and solving for the component of
interest.

For example, by setting $MS _ {Ar}$ and $MS _ {Res}$ equal to their respective expectations
(placing “hats” on the parameters to indicate that we are now talking about estimates of these
things, rather than their true parameter values), we have:

$ MS _{Ar} = 1 \times \hat{\text{V}} \left( \text{Res} \right) + 5 \times \hat{\text{V}} \left(
\text{Ar(Si(Lo))} \right) $

$ MS _{Res} = 1 \times \hat{\text{V}} \left( \text{Res} \right)$

Thus,

$ \hat{\text{V}} \left( \text{Res} \right) = MS _ {Res} /1 $

$ \hat{\text{V}} \left( \text{Ar(Si(Lo))} \right) = \left( MS _ {Ar} - MS _ {Res} \right) /5 $

From the output, we therefore can calculate these estimates directly from the mean squares. The
estimated component of variation for the residual is $MS {Res} = 2525.7% and for areas this is $(
MS _{Ar} -MS _{Res})/5 =(3111.8 -2525.7) /5 = 117.2%. Similar logic, when applied to the
other terms in the analysis yields:

$ \hat{\text{V}} \left( \text{Si(Lo)} \right) = \left( MS _ {Si} - MS _ {Ar} \right) / 10 = 110.9 $
$ \hat{\text{V}} \left( \text{Lo} \right) = \left( MS _ {Lo} - MS _ {Si} \right) / 20 = 381.7 $

These estimates are all calculated automatically by the program and included in the output file in
the column labeled ‘Estimate’ under the heading entitled ‘Components of variation’ (Fig. 1.29). For
the species composition of molluscs in these kelp holdfast assemblages, the greatest component of
variation occurred at the smallest spatial scale (the residual), followed by locations, and then areas
and sites, with the latter two being comparable in size (Fig. 1.29).

An important point here is that these estimates are not actual “variance components” in the
traditional sense unless one is analysing a single variable and the resemblance measure used is
Euclidean distance. In addition, these are obviously not the same as variance-covariance matrices
used in traditional multivariate statistics either (e.g. Mardia, Kent & Bibby (1979) , Seber (1982) ),
because they do not include any estimation of covariance structure at all. Rather, they are
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interpretable geometrically as measures of variability from a partitioning on the basis of the
dissimilarity (or similarity) measure chosen.

These estimates (like their univariate counterparts of variance components) will be in terms of the
squared units of the dissimilarity measure chosen. Thus, in order to put these back onto the
original units, PERMANOVA also calculates their square root (provided in the column labeled
‘Sq.root’ in the results file). These values are akin to a standard deviation in a traditional univariate
analysis. Thus, if the value of the dissimilarity measure used has a direct interpretation (such as
the Jaccard or Bray-Curtis measures, which are both percentages), then these can be examined
and interpreted as well. For example, the greatest variation in molluscan composition is at the level
of individual replicate holdfasts, which (according to the square root of the estimated component of
variation due to the residual of 50.3) may share only around 50% of their species, even though
they may be separated by just a few metres. Over and above this, holdfasts in different areas may
be an additional 10-11% dissimilar in their composition, on average, and so on.

Although the above design included all random factors, for which a discussion of estimating
components of variation is a fairly natural one, we can also estimate the components of variation
due to fixed effects. Recall that these are not measures of variance per se, but rather are sums of

squared fixed effects divided by appropriate degrees of freedom (see the section on Components

of variation). However, if we are interested in comparing the amount of variation that is
attributable to different terms in the model, estimates of components for fixed and/or random
factors are useful and are directly comparable. In fact, it is indeed these estimates of components
of variation that should be used as a correct basis for comparing the relative importance of

different terms in the model towards explaining overall variation ( Underwood & Petraitis (1993) ).
In contrast, the raw sums of squares (whether alone or as a percentage of the total sum of squares)
are not directly comparable, because different terms generally have different degrees of freedom
(e.g., it would clearly be inappropriate to compare the percentage of the total sum of squares
explained by a factor having only 1 degree of freedom versus some other factor that had 5 degrees
of freedom).

The only potentially unsettling consequence of using analogues of the ANOVA estimators to
estimate components of variation is the fact that these estimates (even in the univariate case on

the basis of Euclidean distance) can sometimes turn out to be negative ( Thompson (1962) ,

Searle, Casella & McCulloch (1992) ). This is clearly illogical and is generally accompanied by there
being little or no evidence against the null hypothesis for the term in question that its component is
equal to zero (i.e., a large P-value). Although there are other methods available for estimating

variance components (i.e., ML, REML, Bayesian, etc., see Searle, Casella & McCulloch (1992) ), the
ANOVA estimators do have the attractive quality of being unbiased3*. The best solution to this

issue is often to re-analyse the data after removing that term from the model (e.g., Thompson &

Moore (1963), Fletcher & Underwood (2002) ). This leads naturally to a consideration of how to
remove terms from a model, also referred to in some cases as pooling (see the following section).

34 An unbiased estimator is one whose expectation is equal to the parameter it is trying to
estimate.
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