3.3 Mechanics of PCO

To construct axes that maximise fitted variation (or minimise residual variation) in the cloud of
points defined by the resemblance measure chosen, the calculation of eigenvalues (sometimes
called “latent roots”) and their associated eigenvectors is required. It is best to hold on to the
conceptual description of what the PCO is doing and what it produces, rather than to get too
bogged down in the matrix algebra required for its computation. More complete descriptions are

available elsewhere (e.g., Gower (1966), Legendre & Legendre (1998) ), but in essence, the PCO
is produced by doing the following steps (Fig. 3.1):

1. From the matrix of dissimilarities, D, calculate matrix A, defined (element-wise) as minus
one-half times each dissimilarity (or distance)®3;

2. Centre matrix A on its row and column averages, and on the overall average, to obtain
Gower’s centred matrix G;

3. Eigenvalue decomposition of matrix G yields eigenvalues ($\lambda _i$,i=1, ..., N) and
their associated eigenvectors.

4. The PCO axes Q (also called “scores”) are obtained by multiplying (scaling) each of the
eigenvectors by the square root of their corresponding eigenvalue®?.


https://learninghub.primer-e.com/link/324#bkmrk-gower1966a
https://learninghub.primer-e.com/link/324#bkmrk-legendre1998a
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Fig. 3.1. Schematic diagram of the mechanics of a principal coordinates analysis (PCO).

The eigenvalues associated with each of the PCO axes provide information on how much of the
variability inherent in the resemblance matrix is explained by each successive axis (usually
expressed as a percentage of the total). The eigenvalues (and their associated axes) are ordered
from largest to smallest, and their associated axes are also orthogonal to (i.e., perpendicular to or
independent of) one another. Thus, $\lambda _ 1$ is the largest and the first axis is drawn through
the cloud of points in a direction that maximises the total variation along it. The second eigenvalue,
$\lambda _ 2%, is second-largest and its corresponding axis is drawn in a direction that maximises
the total variation along it, with the further caveat that it must be perpendicular to (independent
of) the first axis, and so on. Although the decomposition will produce N axes if there are N points,
there will generally be a maximum of N - 1 non-zero axes. This is because only N - 1 axes are
required to place N points into a Euclidean space. (Consider: only 1 axis is needed to describe the
distance between two points, only 2 axes are needed to describe the distances among three points,
and so on...). If matrix D has Euclidean distances to begin with and the number of variables (p) is
less than N, then the maximum number of eigenvalues will be p and the PCO axes will correspond
exactly to principal component axes that would be produced using PCA.

The full set of PCO axes when taken all together preserve the original dissimilarities among the
points given in matrix D. However, the adequacy of the representation of the points as projected
onto a smaller number of dimensions is determined for a PCO by considering how much of the total
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variation in the system is explained by the first two (or three) axes that are drawn. The two- (or
three-) dimensional distances in the ordination will underestimate the true dissimilarities®>. The
percentage of the variation explained by the ith PCO axis is calculated as ($100 \times \lambda _i/
\sum \lambda _i $). If the percentage of the variation explained by the first two axes is low, then
distances in the two-dimensional ordination will not necessarily reflect the structures occurring in
the full multivariate space terribly well. How much is “enough” for the percentage of the variation
explained by the first two (or three) axes in order to obtain meaningful interpretations from a PCO
plot is difficult to establish, as it will depend on the goals of the study, the original number of
variables and the number of points in the system. We suggest that taking an approach akin to that
taken for a PCA is appropriate also for a PCO. For example, a two-dimensional PCO ordination that
explains ~70% or more of the multivariate variability inherent in the full resemblance matrix would
be expected to provide a reasonable representation of the general overall structure. Keep in mind,
however, that it is possible for the percentage to be lower, but for the most important features of
the data cloud still to be well represented. Conversely, it is also possible for the percentage to be
relatively high, but for considerable distortions of some distances still to occur, due to the
projection.

63 |f a matrix of similarities is available instead, then the PCO routine in PERMANOVA+ will
automatically translate these into dissimilarities as an initial step in the analysis.

64 |f the eigenvalue ($\lambda _i$) is negative, then the square root of its absolute value is used
instead, but the resulting vector is an imaginary axis (recall that any real number multiplied by $i =
\sqrt{-1}$ is an imaginary number).

65Except in certain rare cases, where the first two or three axes might explain greater than 100%
of the variability! See the section on Negative eigenvalues.
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