4.7 Assumptions & diagnostics

Thus far, we have only done examples for a univariate response variable in Euclidean space, using
DISTLM to fit linear models, but with tests being done by permutation. However, the fact that any
resemblance measure can be used as the basis of the analysis in dbRDA yields considerable
flexibility in terms of modeling. In traditional regression and RDA, the fitted values are a linear
combination of the variables in X. So, the relationship between the multivariate data Y and
predictor variables X is assumed to be linear for the purposes of modeling. In dbRDA, however, the
relationship being modeled between Y and X variables is more complex and depends on the
chosen resemblance measure. Another way to describe dbRDA is that it is a traditional RDA done
on the PCO axes®3 from a resemblance matrix, rather than on the original Y variables. Thus, in
dbRDA, we effectively assume a linear relationship between the PCO axes derived from the

resemblance matrix and the variables in X for purposes of modeling ( Legendre & Anderson (1999)
). In many cases, this is quite appropriate provided the resemblance measure used as the basis of
the analysis is a sensible one for the data. By “sensible”, we mean that the resemblance measure
describes multivariate variation in a way that emphasises the features of the data that are of
interest (e.g., changes in composition, relative abundance, etc.) for specific hypotheses postulated
by the user. Note, for example, that if one were to perform dbRDA on a chi-squared distance
matrix, then this will assume unimodal relationships between Y and X, as is done in canonical

correspondence analysis (CCA, ter Braak (1986a), ter Braak (1986b) )84, Clearly dbRDA goes
beyond what either RDA or CCA can provide, by allowing any resemblance measure (e.qg., Bray-
Curtis, Manhattan, etc.) to define multivariate variation. In addition, once a given resemblance
measure has been chosen, many other kinds of non-linear relationships between the PCO axes and

X can be modeled by introducing polynomials of the variables in X, if desired (e.g., Makarenkov &

Legendre (2002) ).

Although dbRDA does provide quite impressive flexibility with respect to the response variables (Y
), it pays to spend some time with the X variables to examine their distributions and the
relationships among them, as these are being treated in the same way in dbRDA as they would for
any linear multiple regression model. Although DISTLM does not make any explicit assumptions
about the distributions of the X variables, they should nevertheless be reasonable for purposes of
linear modeling - they should not be heavily skewed or contain extreme outliers. It is a very good
idea, therefore, to examine the X variables using a draftsman plot in PRIMER and to transform
them (individually if necessary) to avoid skewness before proceeding.

The issue of multi-collinearity - strong inter-correlations among the X variables - is also something
to watch out for in dbRDA, as it is for RDA or multiple regression (e.g., Neter, Kutner, Nachtsheim

et al. (1996) ). If two variables in X are very highly co-linear (with correlation |r| = 0.95, for
example), then they contain effectively the same information and are redundant for purposes of
the analysis. A redundant variable should be dropped before proceeding (keeping in mind that the
variable which is retained for modeling may of course simply be acting as a proxy for the one that
was dropped). Once again, PRIMER’s Draftsman Plot tool will provide useful direct information
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about multi-collinearity among the variables in X. See pp. 122-123 of chapter 11 in Clarke &

Gorley (2006) , for example, which demonstrate how to use the Draftsman Plot tool to identify
skewness and multi-collinearity for a set of environmental variables.

In traditional multiple regression, the errors are assumed to be independent and identically
distributed (i.i.d.) as normal random variables. DISTLM uses permutations to test hypotheses,
however, so normality is not assumed. For a permutation test in regression, if we consider that the
null hypothesis is true and Y and X are not related to one another, then the matching of a
particular row of Y (where rows identify the samples, as in Fig. 4.2) with a particular row of X does
not matter, and we can order the 1 to N rows of Y (or, equivalently, the rows and columns of matrix

D) in any way we wish (e.g., Manly (2006) ). Thus, all that is assumed is that the sample rows are
exchangeable under a true null hypothesis. For conditional tests, we assume that the residuals
obtained after fitting covariates are exchangeable under a true null hypothesis. This means, more
particularly, that we assume that the linear model being used to fit the covariate(s) to multivariate
data in the space of the resemblance measure is appropriate and that the errors (estimated by the
residuals from this model) have homogeneous dispersions in that space, so they are exchangeable.

83 Being careful, that is, to do all computations on the axes associated with positive and negative
eigenvalues separately, and combining them only when they are squared (e.g., as sums of
squares). Axes corresponding to the negative eigenvalues contribute negatively in the squared

terms. See chapter 3 regarding negative eigenvalues and McArdle & Anderson (2001) for more
details.

84 |f the user performs dbRDA on the basis of the chi-squared distance measure, the results will
produce patterns highly similar to those obtained using CCA. Any differences will be due to the

intrinsic weights used in CCA. See ter Braak (1987), Legendre & Legendre (1998) and Legendre

& Gallagher (2001) for details regarding the differences between CCA and RDA and the algebraic
formulations for these two approaches.
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