5.7 Test by permutation (Anderson’s
irises)

CAP can be used to test for significant differences among the groups in multivariate space. The test
statistics in CAP are different from the pseudo-F used in PERMANOVA. Instead, they are directly
analogous to the traditional classical MANOVA test statistics, so we will demonstrate them here in
an example of classical canonical discriminant analysis (CDA). The data were obtained by Edgar

Anderson ( Anderson (1935) ) and were first used by Sir R. A. Fisher ( Fisher (1936) ) to describe
CDA (sometimes also called canonical variate analysis). Data are located in the file iris.priiris in the
‘Irises’ folder of the ‘Examples add-on’ directory. The samples here are individual flowers. On each
flower, four morphometric variables were measured (in cm): petal length (PL), petal width (PW),
sepal length (SL) and sepal width (SW). There were 150 samples in total, with 50 flowers belonging
to each of 3 species: Iris versicolor (C), Iris virginica (V) and Iris setosa (S). Interest lies in using the
morphometric variables to discriminate or predict the species to which individual flowers belong.

A traditional canonical discriminant analysis is obtained by running the CAP routine on the basis of
a Euclidean distance matrix and manually choosing m = p, where p is the number of variables in
the original data file. The first m PCO axes will therefore be equivalent to PCA axes and these will
contain 100% of the original variation in the data cloud. Even if the original variables are on
different units or scales, there is no need to normalise the data before proceeding with the CAP
analysis, as this is automatically ensured by virtue of the fact that CAP uses orthonormal PCO axes.
In some situations, the number of original variables will exceed (or come close to) the total number
of samples in the data file (i.e., p approaches or exceeds N). In such cases, it is appropriate to use
the leave-one-out diagnostics to choose m, just as would be done for non-Euclidean cases. An
alternative would be to choose a subset of original variables upon which to base the analysis (by
removing, for example, strongly correlated variables). Here, the usual issues and caveats regarding
variable selection for modelling (see chapter 4) come into play.
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Anderson's Iris data

Resemblance: D1 Euclidean distance

0.10 T Flower
A O lris setosa
@) t A ® A Iris versicolor
0.05 1 A ‘A ‘ AA o <& lris virginica
A
%
A A °6 g ¢ 8'=007
o <§> o
4+ 2 _
g 0 Al a0s" o 5, =0.22
& o
A A OO O
0.05+ A <><<§<>
: <><>
&
O ¢
010+ 9 | | | M
-0.15 -0.10 -0.05 0 0.05 0.10
CAP1

Fig. 5.9. Canonical ordination for the discriminant analysis of Anderson’s Iris data.

To proceed with a traditional analysis of the iris data, calculate a Euclidean distance matrix directly
from the data and then choose PERMANOVA+ > CAP > (Analyse against *Groups in factor) &
(Factor for groups or new samples: Flower) & ($\checkmark$Specify m 4) & (Diagnostics
$\checkmark$Do diagnostics > *«Chosen m only) & ($\checkmark$Do permutation test > Num.
permutations: 9999), then click ‘OK’. We have chosen m = 4 here, because we wish to obtain the
classical analysis and there were 4 original variables (PL, PW, SL and SW). The results show that
the first squared canonical correlation is very large ($\delta 1 ©~ 2$ = 0.97) and indeed the first
canonical axis does quite a good job of separating the three iris species from one another (Fig. 5.9).
The second canonical axis has a much smaller eigenvalue ($\delta _ 2 ~ 2$ = 0.22), and actually
there is no clear separation of the groups along this second axis. The role of the original variables
can be visualised by superimposing a vector overlay (shown in the inset of Fig. 5.9) using the
option Graph > Special > (Vectors *Worksheet variables: iris > Correlation type: Multiple). These
vectors show relationships between each of the original individual variables and the CAP axes,
taking into account the other three variables in the worksheet (see the section Vector overlays in
dbRDA in chapter 4). For these data, petal width and sepal length appear to play fairly important
roles in discriminating among the groups. A draftsman plot of the original variables reveals that
sepal length and width are highly correlated with one another (r = 0.96) and petal length is also
fairly highly correlated with each of these (r > 0.8), so it is not terribly surprising that PL and SW
play more minor roles once SL is taken into account.

Diagnostics show that the choice of m = 4 PCO axes includes 100% of the original variation
(‘prop.G’ = 1) and that the leave-one-out allocation success was quite high using the canonical
model: 93.3% of the samples (140 out of 150) were correctly classified (Fig. 5.10). The most
distinct group, which had 100% success under cross-validation, was Iris setosa, whereas the other
two species, Iris versicolor and Iris virginica, were a little less distinct from one another, although
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their allocation success rates were still admirably large (at 92% and 88%, respectively). These
results regarding the relative distinctiveness of the groups coincide well with what can be seen in
the CAP plot (Fig. 5.9), where the Iris setosa group is indeed easily distinguished and well
separated from the other two groups along the first canonical axis.
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Fig. 5.10. Details from the CAP output file for the analysis of Anderson’s iris data.

The results from the permutation tests are shown at the very bottom of the CAP output file (Fig.
5.10). There are two test statistics that are given in the output for the test. The first is a “trace”
test statistic. It is the sum of the canonical eigenvalues (i.e., the sum of the squared canonical
correlations) or the trace of the matrix Q$~0 _m$'HQ$"~0 m$ (denoted in the output text by
‘tr(Q_m'HQ_m)’). When a CAP analysis is based on Euclidean distance and m = p, then this is
equivalent to the traditional MANOVA test statistic known as Pillai’s tracel9>. The other test statistic
provided in the CAP output is simply the first canonical eigenvalue, which is the first squared
canonical correlation, $\delta _ 1 ™ 2$ (denoted in the output text by ‘delta_172’). This test
statistic is directly related to a statistic called Roy’s greatest root criterion in traditional MANOVA.
More specifically, Roy’s criterion is equal to $\delta _ 1 ™~ 2% /(1 - $\delta _1 ~ 2$) when $\delta _
1 ~ 2¢$ is obtained from a CAP based on Euclidean distances%® and when m = p. There are other

MANOVA test statistics (i.e., Wilks’ lambda, Hotelling-Lawley trace, see Mardia, Kent & Bibby
(1979), Seber (1984), Rencher (1998) ). Studies show that these different MANOVA test statistics
differ in their power to detect different kinds of changes among the group centroids in multivariate
space (e.g., Olson (1974), Olson (1975), Rencher (1998) ). Olson ( Olson (1974) , Olson (1975),
Olson (1976) ) suggested that Pillai’s trace, although not the most powerful in all situations, did
perform well in many cases, and importantly, was quite robust to violations of its assumptions,

maintaining type | error rates at nominal levels in the face of non-normality or mild heterogeneity
of variance-covariance matrices. It is well known that Roy’s criterion, however, will be the most
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powerful for detecting changes in means along a single axis in the multivariate space ( Seber

(1984), Rencher (1998) ). Generally, we suggest that the trace criterion will provide the best
approach for the widest range of circumstances, and should be used routinely, while the test using
the first canonical eigenvalue will focus specifically on changes in centroids along a single
dimension, where this is of interest. Of course, the two test statistics will be identical when there is
only canonical axis (e.g., two groups).

The permutation test in CAP assumes only exchangeability of the samples under a true null
hypothesis of no differences in the positions of the centroids among the groups in multivariate
space (for a given chosen value of m). Thus, although the values of the trace statistic and the first
squared canonical correlation are directly related to Pillai's trace and Roy’s criterion, respectively
(when Euclidean distance is used), there are no stringent assumptions about the distributions of
the variables: tests by permutation provide an exact test of the null hypothesis of no differences in

the positions of centroids among groups. Mardia (1971) proposed a permutation test based on

Pillai's trace (e.g., see Seber (1984) ), which would be equivalent to the CAP test on the trace
statistic when based on Euclidean distances. Of course, the CAP routine (like all of the routines in
PERMANOVA+ for PRIMER) also provides the additional flexibility that any resemblance measure
can be used as the basis of the analysis.

105 Thijs equivalence is readily seen by doing a traditional MANOVA using some other statistical
package on the Iris data, where the output for Pillai’s trace will be given as 1.1919, the value
shown for the trace statistic from the CAP analysis in Fig. 5.10.

106 See p. 626 of Legendre & Legendre (1998) for more details.
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