5.8 CAP versus PERMANOVA

It might seem confusing that both CAP and PERMANOVA can be used to test for differences among
groups in multivariate space. At the very least, it begs the question: which test should one use
routinely? The main difference between these two approaches is that CAP is designed to ask: are
there axes in the multivariate space that separate groups? In contrast, PERMANOVA is designed to
ask: does between-group variation explain a significant proportion of the total variation in the
system as a whole? So, CAP is designed to purposely seek out and find groups, even if the
differences occur in obscure directions that are not apparent when one views the data cloud as a
whole, whereas PERMANOVA is more designed to test whether it is reasonable to consider the
existence of these groups in the first place, given the overall variability. Thus, in many applications,
it makes sense to do the PERMANOVA first and, if significant differences are obtained, one might
consider then using the CAP analysis to obtain rigorous measures of the distinctiveness of the
groups in multivariate space (using cross-validation), to characterise those differences (e.g., by
finding variables related to the canonical axes) and possibly to develop a predictive model for use
with future data.

One can also consider the difference between these two methods in terms of differences in the role
that the data cloud plays in the analysis vis-a-vis the hypothesis197. For CAP, the hypothesis is
virtually a given and the role of the data cloud is to predict that hypothesis (the X matrix plays the
role of a response). For PERMANOVA, in contrast, the hypothesis is not a given, and the role of the
data cloud is as a response, with the hypothesis (X matrix) playing the role of predictor. This
fundamental difference is also apparent when we consider the construction of the among-group SS
in PERMANOVA and compare it with the trace statistic in CAP. For PERMANOVA, the among-group
SS can be written as tr(HGH) or, equivalently (if there were no negative eigenvalues), we could
write: tr(HQH). This is a projection of the variation in the resemblance matrix (represented by Q
here) onto the X matrix, via the projection matrix H. For PERMANOVA, all of the PCO axes are

utilised and they are each standardised by their eigenvalues ($\lambda$’s, see chapter 3). On the
other hand, the trace statistic in CAP is tr(Q$~0 _m$'HQ$"0 _m$). The roles of these two matrices
(Q and H) are therefore swapped. Now we have a projection of the X variables (albeit sphericised,
since we are using H) into the space of the resemblance matrix instead. Also, the PCO axes in CAP
are not scaled by their respective eigenvalues, they are left as orthonormal axes (SS = 1). The
purpose of this is really only to save a step. When predicting one set of variables using another, the
variables used as predictors are automatically sphericised as part of the analysis!?8. Since the
eigenvector decomposition of matrix G produces orthonormal PCO axes Q$70$, we may as well
use those directly, rather than multiplying them by their eigenvalues and then subsequently
sphericising them, which would yield the same thing!
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Fig. 5.11. Schematic diagram of the difference in the scaling of PCO axes for PERMANOVA vs CAP.

The difference in the scaling of PCO axes, nevertheless, highlights another difference between CAP
and PERMANOVA. In PERMANOVA, the relative importance of each PCO axis is in proportion to its
eigenvalue (its variance), whereas in CAP, each PCO is given equal weight in the analysis (Fig.
5.11). The latter ensures that directions that otherwise might be of minor importance in the data
cloud as a whole, are given equal weight when it comes to searching for groups. This is directly
analogous to the situation in multiple regression, where predictor variables are automatically
sphericised (normalised to have SS = 1 and rendered independent of one another) when the hat
matrix is calculated.

Another way of expressing the ‘sphericising’ being done by CAP is to see its equivalence with the
classical MANOVA statistics, where the between-group variance-covariance structure is scaled by a
(pooled) within-group variance-covariance matrix (assumed to be homogeneous among groups).
The distances between points being worked on by CAP therefore can also be called Mahalanobis

distances (e.g., Seber (1984) ) in the multivariate PCO space because they are scaled in this way.
In contrast, to obtain the $SS _ A$ of equation (1.3) for PERMANOVA one could calculate the
univariate among-group sum of squares separately and independently for each PCO axis and then
sum these upl92. Similarly, the $SS _ \text{Res}$ of equation (1.3), may be obtained as the sum of
the individual within-group sum of squares calculated separately for each PCO axis. PERMANOVA's
pseudo-F is effectively therefore a ratio of these two sums10,

The relative robustness and power of PERMANOVA versus CAP in a variety of circumstances is
certainly an area warranting further research. In terms of performance, we would expect the type |
errors for the CAP test statistic and the PERMANOVA test statistic to be the same, as both use
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permutations to obtain P-values so both will provide an exact test for the one-way case when the
null hypothesis is true. However, we would expect the power of these two different approaches to

differ. In some limited simulations (some of which are provided by Anderson & Robinson (2003) ,
and some of which are unpublished), CAP was found to be more powerful to detect effects if they
were small in size and occurred in a different direction to the axis of greatest total variation. On the
other hand, PERMANOVA was more powerful if there were multiple independent effects for each of
a number of otherwise unrelated response variables. Although there is clearly scope for more
research in this area, the take-home message must be to distinguish and use these two methods
on the basis of their more fundamental conceptual differences (Fig. 5.12), rather than to try both
and take results from the one that gives the most desirable outcome!
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Fig. 5.12. Schematic diagram of the conceptual and practical differences, in matrix algebra terms,
between the CAP analyses and PERMANOVA (or DISTLM).

107 The data cloud in the space of the appropriate resemblance measure is represented either by
matrix G, Gower’s centred matrix, or by matrix Q, the matrix of principal coordinate axes.
108 The reader may recall that, for the very same reason, it makes no difference to a dbRDA

whether one normalises the X variables before proceeding or not (see chapter 4). The dbRDA
coordinate scores and eigenvalues will be the same. Predictor variables are automatically
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sphericised as part of multiple regression, as a consequence of constructing the H matrix.

109 Note that the SS from PCO axes corresponding to negative eigenvalues would contribute
negatively towards such a sum.

110 Other test statistics could be used. For example, a sum of the individual F ratios obtained from

each PCO axis (e.g., Edgington (1995) , which one might call a “stacked” multivariate F statistic),
could also be used, rather than the ratio of sums that is PERMANOVA's pseudo-F.
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