
Another new introduction in PRIMER 7 is a form of non-hierarchical (flat) clustering, the analogue of
the k-means method in traditional cluster analysis. The latter is a widely-used technique based on
Euclidean distances in the variable space of the original data matrix, seeking to form an optimal
division of samples into a specified number of groups (k), minimising the within-group sums of
squares about the k group ‘centres’ (termed centroids) in that high-dimensional variable space.
However, in that form, it is quite inappropriate for typical species matrices, for which Euclidean
distances or their squares (whether on normalised variables or not) are a poor measure of
dissimil¬arity among samples, as discussed in Section 5 and in more detail in Chapters 2 and 16 of
CiMC. What is required here, to be consistent with the rest of the PRIMER package (and the
hierarchical methods previously described) is a technique which applies to any dissimilarity
coefficient, and in particular, those suitable for species data (e.g. Bray-Curtis). By analogy with k-
means, the concept of k-R clustering is introduced towards the end of Chapter 3 of CiMC, in which
the k groups are chosen to maximise the global ANOSIM R statistic (as it would be calculated for an
ANOSIM test of the k groups involved). Again, the use of R here has nothing to do with hypothesis
testing; it is its usefulness as a completely general measure of separation of defined groups of
samples, based only on the ranks of the dissimilarity matrix – the same numbers, however that
dissimilarity is defined – which is being exploited. Above, we used the idea of maximising R for a
division of the samples into two groups; here the kRCLUSTER routine simply generalises that to
maximising R calculated over k groups. It again involves a demanding iterative search, with user
choice of the number of random restarts (again the current default is 10 but try more if the process
runs quickly).

A perceived drawback of the k-means approach is that k must be specified in advance. There may
be situations in which a pre-fixed number of groups is required but, more likely, it would be useful
to determine the ‘best k’ from a range of values, in some well-defined sense. SIMPROF tests can be
exploited here also, to provide a possible stopping rule. The k-R Cluster dialog asks for min and
max k values to try, and starting with (say) the default min k of 2, finds the optimal division into
two groups and tests those groups, with SIMPROF, for evidence of within-group structure. So far,
these groups and the tests will be exactly those of the unconstrained binary divisive (UNCTREE)
routine, above. But these groups are not then further subdivided – this is not a hierarchical process.
If at least one SIMPROF test is significant then these groups are thrown away, and the procedure
starts again with the full set of samples and attempts to find an optimal k=3 group solution. These
groups are again tested with SIMPROF, and if any of the three tests is significant, a k=4 solution is
sought on the full set of samples, etc. The procedure stops either when the specified max k (default
10) has been explored or when all SIMPROF tests for the current k are not significant (i.e. there is
no statistical evidence of structure at a finer-scale than this k-group partition). kRCLUSTER will
request a factor name to define that grouping; note that it is a single factor holding only the
solution for the (optimum or maximum) k-value at which the procedure terminates. A tree diagram
cannot, of course, be plotted, since there is no hierarchy. In fact, the reason for exploring flat
clustering of this type is to avoid the inflexibility, in hierarchical methods, of samples being unable
to ‘change their allegiance’ – once in a specific group, a sample remains in a subset or superset of
that group.
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A final choice on the k-R Cluster dialog is between (Cluster mode•R), which is precisely the rank-
based algorithm described above, and (Cluster mode•Average rank), which is a subtle variation
bearing some analogy with group average linkage (an idea met in agglomerative clustering but
here still used to produce a flat clustering). The last page of Chapter 3 of CiMC explains this
variation, which (though not using R as such) is still a function only of the ranks of the original
resemblance matrix. In practice, the two flat-clustering modes should produce rather similar
solutions.

Again on the Bristol Channel zooplankton data, whose workspace should still be open, with the
active sheet as the Bray-Curtis similarity matrix based on fourth-root transformed densities, take
Analyse>Cluster>kRCLUSTER>(Cluster mode•R) & ((Number of groups•Auto (SIMPROF))> (Min
k: 2) & (Max k: 10)) & (Number of restarts: 50), and with defaults taken on the SIMPROF options
dialog, and specifying factor for the optimal grouping of Flat R. The results are inevitably rather
minimal in this case: the results window gives the optimal number of groups again as k=4 (with R
=0.884), and Edit>Factors will show the Flat R grouping. You may like to run the routine again
with (Cluster mode•Average rank), which results in the same k=4 groups here, though the factor
sheet shows that the order of assignment of letters A, B, C, D to the 4 groups may differ. This is an
inevitable result of the random search procedure, even when the same options are taken.
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In fact, much the best way of comparing the results of the differing clustering methods of this
section is seen for these data in Fig. 3.10 of CiMC, namely on three copies of the same non-metric
MDS ordination of the 57 samples. See Section 8 for running MDS ordinations, so this example will
not be pursued further here (but you might like to return to these data after tackling Section 8 and
reproduce a larger version of Fig. 3.10, covering all the variations of clustering methods you have
generated in this section, so Save Workspace As>File name: Bristol Channel ws). In Fig. 3.10, the
differing SIMPROF group factors SprofGps, Unctree and Flat R – for the hierarchical agglomerative
(group average), divisive and flat clusters – are plotted as symbols, and relettered consistently,
since essentially the same four main groups result from these very different clustering techniques.
The minor differences between methods are clear: they just concern allocation of a few sites, which
tend to be intermediate between the main groups – the treatment of sites 9, 23 and 24 is all that
distinguishes them.

This is exactly what one might wish for in drawing solidly-based inference of clustering structure –
a stability to the choice of method. It is relevant here that the same transformation and (especially)
similarity matrix was used for all methods. Major differences in groupings would be expected to
arise from using different pretreatments or dissimilarity definitions, e.g. comparing SIMPROF
groups from agglomerative clusters, using Bray-Curtis on fourth-root transformed densities, with
SIMPROF groups from a method closer to traditional k-means clustering (normalised species data,
with resemblances calculated using Euclidean distance, and analysed by the Average rank cluster
mode of the above k-R clustering). This has rather little to do with choice of clustering method but
everything to do with what is understood by similarity of samples in the high-dimensional species
space. This is a recurring theme in CiMC: the major differences between ordination methods such
as PCA (Section 12) and nMDS (Section 8) usually has much less to do with the different way the
methods try to view high-d data in low-d space, but much more to do with how those methods
choose to define ‘distances’ in that high-d space at the outset (PCA by Euclidean distance, nMDS
often by a species-based community measure from the Bray-Curtis family).
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